GASP Publications

All GASP papers can be retrieved at the following public ADS library: ADS public library
  1. GASP. I. Gas stripping phenomena in galaxies with MUSE

    Poggianti et al. (2017a), ApJ 844, 48, ArXiv #: 1704.05086
  2. GASP. II. A MUSE view of extreme ram-pressure stripping along the line of sight: kinematics of the jellyfish galaxy JO201

    Bellhouse et al. (2017), ApJ 844, 49, ArXiv #: 1704.05087
  3. GASP. III. JO36: a case of multiple environmental effects at play?

    Fritz et al. (2017), ApJ 848, 132, ArXiv #: 1704.05088
  4. GASP. IV. A Muse View of Extreme Ram-pressure Stripping in the Plane of the Sky: The Case of Jellyfish Galaxy JO204

    Gullieuszik et al. (2017), ApJ 846, 27 ArXiv #: 1708.09035
  5. GASP. V. Ram-pressure stripping of a ring Hoag's-like galaxy in a massive cluster

    Moretti et al. (2018a), MNRAS, 475, 4055 ArXiv #: 1802.07294
  6. Supermassive Black Holes Feed on Cosmic Jellyfish

    Poggianti et al. (2017b), Nature, 548, 304 ArXiv #: 1708.09036
  7. GASP. VII. Signs of gas inflow onto a lopsided galaxy

    Vulcani et al. (2018a), ApJ 852, 942 ArXiv #: 1802.07296
  8. GASP. VIII. Capturing the birth of a Tidal Dwarf Galaxy in a merging system at z~0.05

    Vulcani et al. (2017c), ApJ 850, 163, ArXiv #: 1708.09037
  9. GASP IX. Jellyfish galaxies in phase-space: an orbital study of intense ram-pressure stripping in clusters

    Jaffe et al. (2018), MNRAS 476, 4753, ArXiv #: 1802.07297
  10. GASP. X: APEX detection of molecular gas in the tails and in the disks of ram-pressure stripped galaxies

    Moretti et al. (2018b), MNRAS 480, 2508, ArXiv #: 1803.06183
  11. Ultra-Violet Imaging Telescope view of ram-pressure stripping in action: Star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85

    George et al. (2018), MNRAS 479, 4126, ArXiv #: 1803.06193
  12. GASP. XII. The variety of physical processes occurring in a single galaxy group in formation

    Vulcani et al. (2018b), MNRAS, 480, 3152, ArXiv #: 1809.02668
  13. GASP. XIII. Star formation in gas outside galaxies

    Poggianti et al. (2019a), MNRAS, 482, 4466, ArXiv #: 1811.00823
  14. Enhanced star formation in both disks and ram pressure stripped tails of GASP jellyfish galaxies

    Vulcani et al. (2018c), ApJL, 866, 25 ArXiv #: 1810.05164
  15. GASP. XV. A MUSE View of Extreme Ram-Pressure Stripping along the Line of Sight: Physical properties of the Jellyfish Galaxy JO201

    Bellhouse et al. (2019), MNRAS, 485, 1157, ArXiv #: 1902.04486
  16. GASP. XVI. Does cosmic web enhancement turn on star formation in galaxies?

    Vulcani et al. (2019a), MNRAS, 487, 2278, ArXiv #: 1905.08971
  17. GASP. XVII. HI imaging of the jellyfish galaxy JO206: gas stripping and enhanced star formation

    Ramatsoku et al. (2019), MNRAS,487, 4580, ArXiv #: 1906.03686
  18. GASP XVIII: Star formation quenching due to AGN feedback in the central region of a jellyfish galaxy

    George et al. (2019), MNRAS, 487, 3102, ArXiv #: 1905.08973
  19. GASP - XIX. AGN and their outflows at the centre of jellyfish galaxies

    Radovich et al. (2019), MNRAS, 486, 486, ArXiv #: 1905.08972
  20. GASP. XX. From the loose spatially-resolved to the tight global SFR-Mass relation in local spiral galaxies

    Vulcani et al. (2019b), MNRAS 488, 1597, ArXiv #: 1907.00976
  21. GASP. XXI. Star formation rates in the tails of galaxies undergoing ram-pressure stripping

    Gullieuszik et al. 2020, ApJ 899, 13, ArXiv #: 2006.16032
  22. GASP. XXII The molecular gas content of the JW100 jellyfish galaxy at z~0.05: does ram pressure promote molecular gas formation?

    Moretti et al. (2019), ApJ 889, 9, ArXiv #: 1912.06565
  23. GASP XXIII: A jellyfish galaxy as an astrophysical laboratory of the baryonic cycle

    Poggianti et al. (2019b), ApJ 887,155, ArXiv #: 1910.11622
  24. GASP XXIV. The history of abruptly quenched galaxies in clusters

    Vulcani et al. (2020a), ApJ 892, 146, ArXiv #: 2003.02274
  25. GASP XXV: Neutral Hydrogen gas in the striking Jellyfish Galaxy JO204

    Deb et al. (2020), MNRAS 494, 5029, ArXiv #: 2004.04754
  26. GASP XXVI. HI Gas in Jellyfish Galaxies: The case of JO201 and JO206

    Ramatsoku et al. (2020), A&A 640, 22, ArXiv #: 2006.11543
  27. GASP XXVII: Gas-phase metallicity scaling relations in disk galaxies with and without ram-pressure stripping

    Franchetto et al. (2020), ApJ 895, 106, ArXiv #: 2004.11917
  28. Highly ordered magnetic fields in the tail of the jellyfish galaxy JO206

    Mueller et al. (2021), Nature Astronomy, 5, 159, ArXiv #: 2009.13287
  29. GASP XXIX. Unwinding the arms of spiral galaxies via ram-pressure stripping

    Bellhouse et al. (2021), MNRAS, 500, 1285, ArXiv #: 2010.09733
  30. GASP XXX. The spatially resolved SFR-Mass relation in stripping galaxies in the local universe

    Vulcani et al. (2020b), ApJ 899, 98, ArXiv #: 2007.04996
  31. The high molecular gas content, and the efficient conversion of neutral into molecular gas, in jellyfish galaxies

    Moretti et al. (2020), ApJL 897, 30, ArXiv #: 2006.13612
  32. GASP XXXII. Measuring the diffuse ionized gas fraction in ram-pressure stripped galaxies

    Tomicic et al. (2021), ApJ, 907, 22, ArXiv #: 2011.08869
  33. GASP XXXIII. The ability of spatially resolved data to distinguish among the different physical mechanisms affecting galaxies in low-density environments

    Vulcani et al. (2021), ApJ 914, 27, ArXiv #: 2104.02089
  34. GASP XXXIV. Unfolding the thermal side of ram pressure stripping in the jellyfish galaxy JO201

    Campitiello et al. (2021), ApJ, 911, 144, ArXiv #: 2013.03147
  35. GASP XXXV. Characteristics of the diffuse ionised gas in gas-stripped galaxies

    Tomicic et al. (2021), ApJ 922, 131, ArXiv #: 2108.12433
  36. GASP and MaNGA surveys shed light on the enigma of the gas metallicity gradients in disk galaxies

    Franchetto et al. (2021), ApJ 923, 28, ArXiv #: 2109.02656
  37. GASP XXXVII: The Most Extreme Jellyfish Galaxies Compared to Other Disk Galaxies in Clusters, an HI Study

    Luber (2022), ApJ 927, 39, Arxiv #: 2111.02538
  38. GASP XXXVIII: The LOFAR-MeerKAT-VLA view on the non-thermal side of a jellyfish galaxy

    Ignesti et al. (2021), ApJ 924, 64, ArXiv #: 2201.00853
  39. Evidence for mixing between ICM and stripped ISM by the analysis of the gas metallicity in the tails of jellyfish galaxies

    Franchetto at al. (2021), ApJL 922, 6, ArXiv #: 2111.04755
  40. Exploring the AGN-ram pressure stripping connection in local clusters

    Peluso et al. (2021), ApJ 927, 130, ArXiv #: 2111.02538
  41. Two striking head-tail galaxies in the galaxy cluster IIZW108: insights into transition to turbulence, magnetic fields, and particle re-acceleration

    Mueller et al. (2021), MNRAS 508, 5326, ArXiv #: 2110.03705
  42. The relevance of ram pressure stripping for the evolution of blue cluster galaxies as seen at optical wavelengths

    Vulcani et al. (2022), ApJ 927, 91, ArXiv #: 2201.02644
  43. A New Method to Constrain the Appearance and Disappearance of Observed Jellyfish Galaxy Tails

    Smith et al. (2022), ApJ 934, 86, ArXiv #: 2207.00029
  44. Unveiling the interplay between the GASP jellyfish galaxy JO194 and its environment with Chandra

    Bartolini et al. (2022), ApJ 936,74, ArXiv #: 2208.01425
  45. Walk on the Low Side: LOFAR explores the low-frequency radio emission of GASP jellyfish galaxies

    Ignesti et al. (2022), ApJ 937,58, ArXiv #: 2208.11955
  46. GASP XXXIX: MeerKAT hunts Jellyfish in A2626

    Deb et al. (2022), MNRAS 516, 2683, ArXiv #: 2208.12950
  47. The spatially resolved view of star formation in galaxy clusters

    Poggianti et al. (2022), proceeding of IAUS373 in press 519, 2426, ArXiv #: 2211.12297
  48. Environmental processes at work in galaxy clusters: triggering of the AGN activity and development of X-ray tails

    Moretti et al. (2022), Societa' Astronomica Italiana, 93, 108
  49. 3D modeling of the molecular gas kinematics in optically-selected jellyfish galaxies

    Bacchini et al. (2023), ApJ 950, 24, ArXiv #: 2301.03090
  50. GASP XLV: Stellar Bars In Jellyfish Galaxies. Analysis of ionised gas and stellar populations

    Sanchez-Garcia et al. (2023), ApJ 945, 99, ArXiv #: 2301.06612
  51. Ultraviolet imaging observations of three jellyfish galaxies: star formation suppression in the centre and ongoing star formation in stripped tails

    George et al. (2023), MNRAS 519, 2426, ArXiv #: 2212.02423
  52. How Ram Pressure Drives Radial Gas Motions in the Surviving Disk

    Akerman et al. (2023), ApJ 948, 18, ArXiv #: 2301.09652
  53. UV and H-alpha HST observations of 6 GASP jellyfish galaxies

    Gullieuszik et al. (2023), ApJ 945, 54, ArXiv #: 2301.08279
  54. HST imaging of star-forming clumps in 6 GASP ram-pressure stripped galaxies

    Giunchi et al. (2023), ApJ 949, 72, ArXiv #: 2302.10615
  55. Ram pressure stripping in the EAGLE simulation

    Kulier et al. (2023), ApJ in press, ArXiv #: 2305.03758
  56. Radio continuum tails in ram pressure-stripped spiral galaxies: experimenting with a semi-empirical model in Abell 2255

    Ignest et al. (2023), A&A in press, ArXiv #: 2305.19941
  57. The morphological transformation of ram pressure stripped galaxies: a pathway from late to early galaxy types

    Marasco et al. (2023), ApJ in press, ArXiv #: 2308.14791
  58. The evolution of the cold gas fraction in nearby clusters ram-pressure stripped galaxies

    Moretti et al. (2023), ApJ in press, ArXiv #: 2309.00449
  59. On the encounter between the GASP galaxy JO36 and the radio plume of GIN 049

    Ignesti et al. (2023), ApJ in press, ArXiv #: 2309.02002
  60. Gas-phase metallicity of local AGN in the GASP and MaNGA surveys: the role of ram-pressure stripping

    Peluso et al. (2023), ApJ in press, ArXiv #: 2309.05332
  61. The effect of cluster dynamical state on ram-pressure stripping

    Lourenco et al. (2023), MNRAS in press, ArXiv #: 2309.15934
  62. Morphology of star-forming clumps in ram-pressure stripped galaxies as seen by HST

    Giunchi et al. (2023), ApJ in press, ArXiv #: 2310.07267
  63. The Surprising Lack of Effect from Stellar Feedback on the Gas Stripping Rate from Massive Jellyfish Galaxies

    Akerman et al. (2023), submitted to MNRAS, ArXiv #: 2311.04964

High redshift science

Within the ERC program, some of us are conducting an effort to characterize ram pressure stripped galaxies in intermediate redshift clusters. Thanks to the MUSE-Guaranted Time Observations (GTO) data (Bacon et al. 2017, Richard et al 2021), 10 galaxy clusters at z=0.3-0.6 are being inspected and spatially resolved data of both star forming and passive cluster galaxies are being studied. Combining HST and MUSE observations we are characterizing the capability of ram pressure stripping in producing ionised gas tails and quenching the star formation at significant look-back times.

  1. Observing ram pressure at work in intermediate redshift clusters with MUSE: the case of Abell 2744and Abell 370

    Moretti et al. (2022), ApJ 925, 4, ArXiv #: 2111.04501
  2. Post-starburst galaxies in the centers of intermediate redshift clusters

    Werle et al. (2022), ApJ 930, 43, ArXiv #: 2203.08862
  3. Locations and Morphologies of Jellyfish Galaxies in A2744 and A370

    Bellhouse et al. (2022), ApJ 937, 18, ArXiv #: 2208.10524
  4. Early results from GLASS-JWST. XX: Unveiling a population of "red-excess'' galaxies in Abell2744 and in the coeval field

    Vulcani et al. (2023), ApJL 948, 15 ArXiv #: 2303.01115
  5. Evidence for enhanced star formation rates in z~0.35 cluster galaxies undergoing ram pressure stripping

    Vulcani et al. (2023), A&A in press ArXiv #: 2311.13486

Complementary material associated with publications

Interactive online Figure for Bellhouse et al. (2017)

Here you can navigate the 3D visualisation of Hα gas of JO201, presented in Bellhouse et al. (2017). The gas has been extracted from the KUBEVIZ (Fossati et al. 2016) fit. X and Y axes show projected distance, with the Z axis representing the wavelength/velocity and linewidth/sigma. Surface contours are plotted with different colours, from yellow to dark blue. The units and contours are arbitrary as they have been chosen at levels which highlight interesting features in the Hα gas, such as the bright central emission, knots of Hα and the extended diffuse gas.

Select Views:
Interact with mouse (drag to rotate, ctrl-drag to pan, scroll to zoom)