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New Stars 
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Historical ‘New Stars’ 
 

Appearance of a new star recorded in the most ancient documents (comets, novae and 

supernovae)‏ 

 

• Earliest recorded by Chinese astronomers in 185 AD: SN 185 (SNR RCW 86) 

• Brightest historical supernova:  SN 1006 (SNR 1006) 

• Supernova SN 1054 produced the Crab Nebula 

• Supernovae SN 1572 (Tycho SNR) and 

     SN 1604 (Kepler SNR), the latest to be observed  

     with the naked eye in the Milky Way galaxy 
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Picture of SN 1572 from Tycho Brahe's 

De nova et nullius aevi memoria prius 

visa stella ("Concerning the New Star, 

never seen before in the life  

or memory of anyone“) 

http://en.wikipedia.org/wiki/SN_185
http://en.wikipedia.org/wiki/SN_185
http://en.wikipedia.org/wiki/SN_1006
http://en.wikipedia.org/wiki/SN_1006
http://en.wikipedia.org/wiki/SN_1054
http://en.wikipedia.org/wiki/SN_1054
http://en.wikipedia.org/wiki/Crab_Nebula
http://en.wikipedia.org/wiki/SN_1572
http://en.wikipedia.org/wiki/SN_1572
http://en.wikipedia.org/wiki/SN_1604
http://en.wikipedia.org/wiki/SN_1604
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A bit more history 
 

Modern history of supernovae began in 1885 with the discovery of a bright event in the 

Andromeda galaxy. A few other events were found serendipitously during the early 

telescopic observations of spiral nebulae 

 

“It is quite possible that we have to deal with two distinct classes of Novae: one 'upper 

class' having comparatively few members and reaching an absolute magnitude more or 

less equal to the absolute magnitude of the system in which they appear: one 'lower 

class' in the mean 10 magnitudes fainter …” (Lundmark 1925)‏ 

 

Enormous luminosity of these events definitely established after the extragalactic 

nebulae were placed at their actual distances, leading Baade & Zwicky (1934) to define 

them as super-novae 
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BVI image of Supernova 1999em in 

NGC 1637. Credit: Nick Suntzeff  

This color image of Supernova 1998bu 

in M96 was made with BVI data. 

(Credit: Nicholas B. Suntzeff )‏ 
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HST image of Supernova 

1994D in NGC 4526 from 

CfA taken on 5/9/94 
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• February 23, 1987: Shelton and Jones (1987) announce the discovery of a 

supernova in the Large Magellanic Cloud, SN 1987A 

• Brightest supernova observed after that recorded by Kepler in 1604 (SN 1604)‏ 

• First supernova to be observed in every band of the electromagnetic spectrum (from 

radio to gamma-rays)‏ 

• First detected through its initial burst of neutrinos, revealed by the Mont Blanc, 

Kamiokande, IMB and Baksan underground detector 

• For a review on SN1987A see Arnett et al. (1989), McCray (1993), Panagia (2005)‏ 

SN 1987A 
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Initial flash of light from the supernova 

explosion causes the ring to glow. 

Debris hurls into space, the fastest 

moving at 1/10 the speed of light. The 

supernova's shockwave and the impact 

with the ejecta cause the ring to glow 

again. The closer the pieces of the ring 

are to the shockwave, the sooner they 

light up  

(Credit: T. Goertel, The Space 

Telescope Science Institute)‏ 

 

• Ejected ~20000 years before explosion 

• Only the inner surfaces of a much 

greater mass 

SN 1987A: rings 

SN 1987A, its companion stars, and the 

circumstellar rings  (Credit: Dick McCray)‏ 
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movies/sn1987.mov
movies/sn1987.mov
movies/sn1987.mov


Light curves and spectra of supernovae 
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Typical peak luminosity and duration: 

     L = 3.0e42 erg/s                                           (a billion time the Sun luminosity) 

     t = 100 days = 8.0e6 s 

Radiated energy: Er = L t = 1.0e49 erg          (emitted by the Sun in 100 million years) 

 

Typical ejecta mass and velocity: 

(A)    M = 1 Msun = 2.0e33 gr 

          V = 5.0e8 cm/s 

(B)    M = 5 Msun = 1.0e34 gr 

          V = 3.0e8 cm/s 

Kinetic energy of the ejecta:  Ek = M V2 = 1.0e51 erg (1 foe) = 100 Er 
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Supernovae: The most luminous and energetic stellar events 



SN Types: classification 
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(Turatto 2003) 
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SN Types: classification 
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IIP 

IIL 

Barbon et al. (1979)‏ 

Turatto (2003)‏ 
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Light curves 

 
Type Ia: more homogeneous 

Type II: much more heterogeneous 
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Photospheric diffusion phase Photospheric recombination phase Nebular phase 
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Photospheric velocity  

and temperature 
 

V determined from the minimum of the  

absorption through of P Cygni line profiles 
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P cygni line profile  

(from http://supernova.lbl.gov/~dnkasen) Pastorello et al. (2006)  



Basic explosion mechanisms 
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There is strong evidence that Type II and Ibc SNe are 

produced by the collapse of the core of a massive (> 8 

Msun) star at the end of its evolution 

 

No further nuclear burning can support the Fe core, as 

Fe is the most tightly bound nucleus (9 MeV per 

nucleon) 

 

The Fe core collapses until nuclear forces halt it, 

releasing a huge amount of gravitational binding 

energy 

 

Core mass and radius: Mc~1 Msun, rc~10 km 

Explosion energy E~GMc
2/rc~1053 erg: 99% neutrinos (confirmed by SN 1987A)‏ 

 

A shock wave forms and propagates through the envelope, determining how energy is 

deposited in it and what is the outcome of the explosion: 

 1% kinetic energy of the expanding ejecta 

 0.01% radiation 
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Core-collapse of massive stars 
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Artwork©2010 Don Dixon  

cosmographica.com  
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Neutrino events from SN 1987A (courtesy of Dick McCray)‏ 
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There is strong evidence that Type Ia SNe are 

produced by the thermonuclear detonation/deflagration 

of a Carbon-Oxygen White Dwarf (WD) 

 

The explosion is triggered when the WD reaches 1.4 

Msun by accretion from a companion star and becomes 

unstable (Chandrasekhar limit) 

 

Thermonuclear burning of CO-rich material  into Fe-

peak elements releases a huge amount of nuclear 

binding energy 

 

CO nuclear binding energy: epsilon~1018 erg/g 

The incineration of a CO mass Mco=1 Msun releases E~epsilon Mco~1051 erg 

 

A thermonuclear burning front forms and propagates through the envelope.  

C ignition in the degenerate interior of a WD can result in a centered/off-centered 

ignition and in the propagation of  a supersonic/subsonic wave, depending on the 

internal WD structure. 
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Thermonuclear explosion of a CO White Dwarf 
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Artwork©2010 Don Dixon  

cosmographica.com  



The most prolific sources of elements in the Galaxy 
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Hoyle (1946) was the first to propose that heavy elements in the Universe are 

synthetized in stars. Later Burbridge et al. (1957) and Cameron (1957) identified the 

theoretical framework for the synthesis of atomic nuclei in stars via nuclear reactions. 

 

After synthetizing them in their interiors, stars return this processed material to the 

interstellar medium through various hydrostatic or explosive processes, thereby 

enriching it in metals. 

 

A crucial problem for studying the chemical enrichment of galaxies is determining the 

chemical yields of SNe as a function of progenitor mass: 

• Core-collapse SNe  intermediate mass elements (C, O, Ne, Mg, Al) 

• Thermonuclear SNe  iron group elements (Fe, Ni) 

 

 

H, He Ne, Mg, Al 

Si,  S 

C, O 

Fe, Ni, Ti 
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Chemical yields 
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Nomoto et al. (2000)  
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Nakamura et al. (1999)  



The problem of the Ni yield in CC SNe 

 
Crucial dependence of Mni on mass cut, mixing, fall-back 

  a) Mni can be computed “almost directly” from observations 

  b) M can be obtained from modelling the observations or direct detection 

      of the progenitors (e.g. Smartt et al. 2004, 2008)‏ 
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Iwamoto et al. (2000)‏ 

Zampieri (2007)‏ 

Luca Zampieri - Supernovae, PhD Course 2013, SISSA 



CC SNe: compact remnant? 
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CC SNe: Birth places of neutron stars 

CC SNe are believed to be the birth place of neutron stars (NSs) 

 

When the core reaches nuclear densities (rho=1.0e14 g/cm3), nuclei and free nucleons 

are so tightly bound that start to feel the short-range nuclear force (which is repulsive at 

very small distances) 

 

The collapsing inner core rebounds. It is very hot (1.0e10 K) and dense (1.0e14 g/cm3) 

 proton-neutron star (PNS) 

 
Cooling of the PNS is driven by neutrino diffusion  
and convection. In a few tens of seconds the  
proto-NS becomes a NS 

 

    Mass=1.5 Msun 

    Radius=20 km 

    Rotational period=1.0e-3 s 

    Magnetic field=1.0e13 G 

 

The discovery of pulsars in 1967 by Jocelyn Bell e Antony Hewish (Nobel in 1974) 

confirmed the existence of neutron stars. Their association to supernova remnants 

confirm that they are produced in supernova explosions 

http://nrumiano.free.fr/Images/Neutron_star_E.gif‏ 



Fallback and BH formation 

 

                          Mrem = Mcore + Mfb               BH or NS ? 
                                           Mrem < Mcr                                           NS 

                          Mrem > Mcr                                           BH 

Fallback (and direct collapse) determines the mass distribution of stellar BHs 

 

shock 

NS 

 After shock passage, ejecta are in homologous 
expansion: V  r 

 Low velocity, inner part of the expanding 
envelope (inside the He layer) may remain 
gravitationally bound  fallback (Woosley & 
Weaver 1995; Colpi et al. 1996; Zampieri et al. 
 ‏(1998

V  r  
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Themonuclear SNe: the most powerful 

cosmological lampposts 
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Thermonuclear SNe: standard candles 

It has long been recognized that Type Ia SNe could be very useful distance indicators 

(e.g. Branch & Tammann 1992; Branch 1998) because they have: 

 

• exceedingly high luminosity: L=1.0e43 erg/s (B band magnitude=-19) 

• small dispersion among their peak absolute L (<0.3 mag) 

• homogeneous spectral properties, if compared at similar phases (Riess et al. 1997) 

 

Research on Type Ia SNe in the 1990s has demonstrated their enormous potential as 

cosmological distance indicators (80% of them are homogeneous; Branch et al. 1993).  

 

Until the mid-1990s it was assumed that they are perfect ‘standard candles’ (Vaughan et 

al. 1995) with: 

 

                    <MB(max)> = (-19.74±0.06)+ 5log(H0/50) mag 
 
Sandage et al. (1996) and Saha et al. (1997) combined similar relations with HST 

Cepheid distances to derive H0. 

 

 

 



For nearby SNe, knowing MB and mB, and the expansion  

velocity of  the host galaxy V, it is possible to construct  

the Hubble diagram: 

 

       m-M=5log D – 5 

       D=V/H0 

       m-M=-5-5log H0 + 5log V 

 

The scatter is caused by the fact that Type Ia SNe are  

not perfect ‘standard candles’. After correcting M 

with suitable calibration relations, the correlation 

is significantly improved. 

 

Extending the Hubble diagram to higher redshifts, 

it is possible to probe additional cosmological parameters. 

 

Two major teams were involved in this research in the 1990s: the ‘Supernova 

Cosmology Project’ (SCP) led by Saul Perlmutter and the ‘High-Z Supernova Search 

Time’ (HZT) led by Brian Schmidt and Adam Riess. They were awarded the 2011 Nobel 

Prize in Physics "for the discovery of the accelerating expansion of the Universe 

through observations of distant supernovae". 
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Thermonuclear SNe: the Universe is accelerating 

Filippenko (2003)‏ 



Iron core-collapse SNe: 
Explosion mechanism, 

shock/jet propagation and 
energy deposition 

Supernova yields: 
affected by mass cut, 

explosion energy, 
mixing, 

fallback; crucial to 
determine chemical 

yields as a function of M 

Compact remnants: 
formation and mass 
distribution of NSs 

and BHs, 
direct detection of 

BHs in SNe? 

Thermonuclear SNe: 
used as standard 

candles to probe the 
structure of space-time 

and determine 
cosmological 
parameters 

Hypernovae: 
connection 

with Gamma Ray 
Bursts, 

jet-induced SNe, 
Supranovae? Failed SNe: direct 

collapse 
to a BH, formation of 
massive stellar BHs? 

SNe at the crossroads of many challenging problems 
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Acceleration of 
Galactic Cosmic 

Rays 
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Some useful review papers or books 

• Arnett, Supernovae and Nucleosynthesis, 1996 

 

• Filippenko, 2003, in “Measuring and Modeling the Universe”, Carnegie 

Observatories Astrophysics Series, Vol. 2, ed. W. L. Freedman (Cambridge: 

Cambridge Univ. Press): Evidence from Type Ia Supernovae for an Accelerating 

Universe and Dark Energy 

 

• Jose' and Iliadis, 2011, Reports on Progress in Physics, 74, 096901: Nuclear 

astrophysics: the unfinished quest for the origin of the elements 


