

Gaia News:Counting down to launch

A. Vallenari

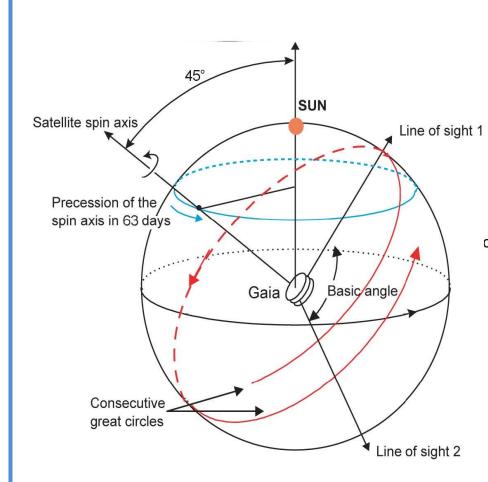
INAF, Padova Astronomical Observatory on behalf of DPACE

Outline

- Gaia Spacecraft status
- The Gaia sky
- Gaia open and globular clusters
- From data to science: data releases

Counting down to launch

- Gaia in Kourou on 23-26 August
- Launch campaign underway
- Payload Module is under electrical testing
- Sun Shield Deployment test 10-11 October
- S/C fuelling 2-5 Nov
- Launch 20 Nov 201308:57:30 UTC
- OR#4 successful
- Science performances



Scanning the Galaxy

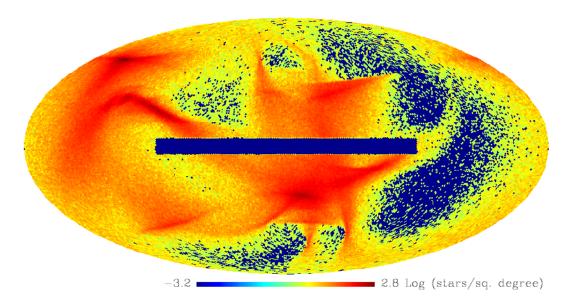
- Scanning Mission
- Complete down to to G=20.
- Bright limit G=5.7
- Five-year scanning survey mission: sky-coverage non-uniformity
- Each source is observed ~ 75 times in astrometry & photom. 50 in spectroscopy
- Varies over the sky between
- ~50 and ~130 (~20% dead time)
- Angular resolution comparable to HST

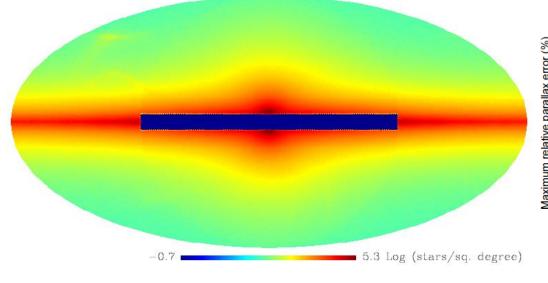
Astronomer's shopping list

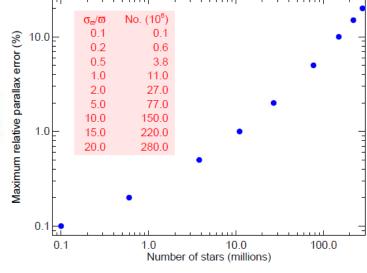
- High precision astrometry
- High-precision broad-band photometry
- Multi-band photometry
- Spectra IR Ca II triplet
- Spectral classification (log g, T_eff,[Fe/H] (Bailer-Jones+2013)
 - Radial velocities _____
 - Metallicities
 - Rotation velocities

- 1 billion stars
 - 10 μas @ V < 13 mag
 - 25 µas @ V = 15 mag

300millions of stars a few millions

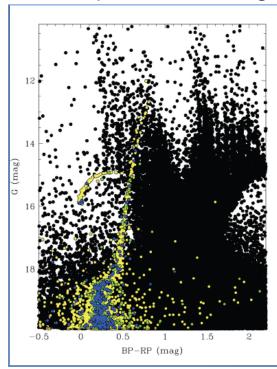

Single Stars, but not only: SSO (Mignard+2012), binaries, galaxies(Bellas-Velidis2013), QSOs, exoplanets (Sozzetti+ 2008)

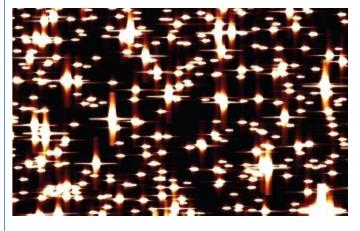



Gaia sky

9E8 Thin Disk,4.3E8 Thick Disk stars,2.1E7 Halo stars1.7E8 Bulge stars

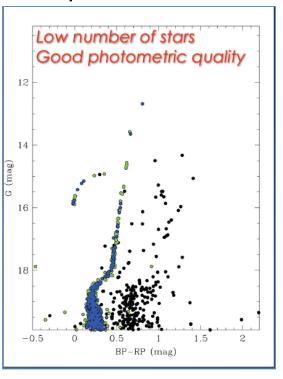
Colors: stellar density (X. Luri 2010)



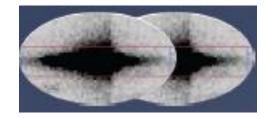


Globular clusters View - I

d=10 Kpc, c=2.5, bulge



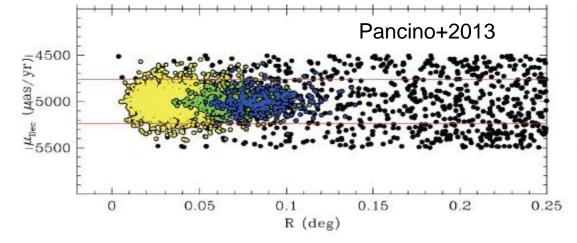
Gaia GIBIS FoV


Pancino+2013

p.m selection

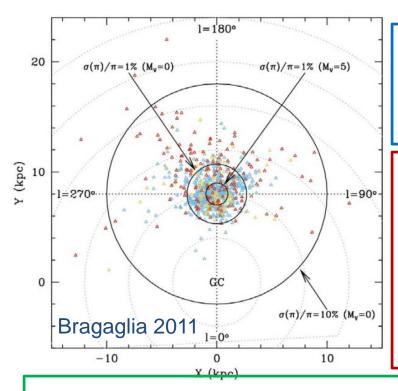
Non rotating 3D cluster (Kupper + 2011) +field stars

Generating Gaia images crowding (partial superposition)



gaia

Globular cluster View - II



- 80 of 150 GCsd < 10 Kpc
- Proper motions orbits maybe tidal tails → halo potential
- Membership determination of 100/10000 stars(outside the half light radius, 3-5 μarcsec/yr at 10 Kpc)
- More than 5000 stars for half of the clusters
- Mean distances to < 1 % for about 80 clusters</p>
- Mean distances to < 5 % for all clusters
- Spectra of stars above G=17 for Rv

Gaia Open Clusters-I

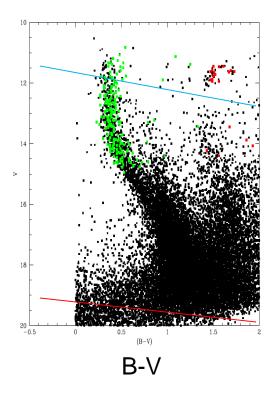
Present situation: 2095 known OCs
1193 with distance
100 with a [Fe/H] estimate(Dias+2010)

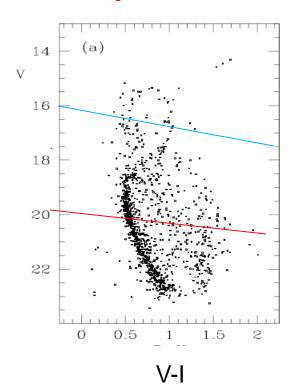
Gaia: Derive distances + pm of individual stars in Ocs

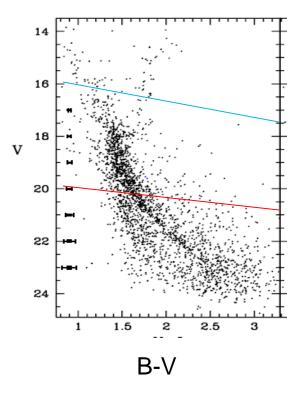
- at 1% for Mv=5 d < 1.5kpc
- at 1% for M=0 d < 4kpc
- -at 10% for almost all known cluster
- → accurate membership-- orbits

Small velocity dispersion in OCs (1 - 2 km/sec) → studies of the internal dynamics require ~ 0.2 km/sec

Gaia: accuracy better than 1% for transverse velocity
 G0 stars brighter than V~13 (d<500pc), K1 III (red clump in old OCs) V<14:d < 5 kpc.


Missing: Detailed chemical abundances for G>11-12





Gaia Open Clusters-II

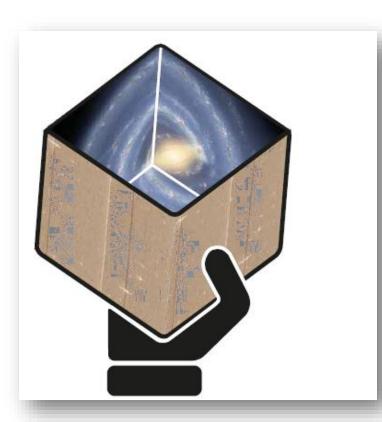
NGC 6705 (Vallenari+2013) D=1800 pc, Age=250-300 Myr

Be 17 (Vallenari+1999, Bragaglia+ 2006) D=2600 pc, Age=10 Gyr

Be 29 (Tosi, Bragaglia 2006) D=13.05 Kpc, Age=3.7 Gyr

From data to science: Gaia Catalog

- Complex catalog dealing with more than 2 billions of objects, having information about:
 positions, proper motions, parallayes, radial
 - positions, proper motions, parallaxes, radial velocities, Aps, binarity, variability
- What will you get:
 - Validated Gaia data
 - Documentation
 - Advanced tool for data manipulation, data mining, and visualization
 - cross.-match with existing Catalogs and survey data



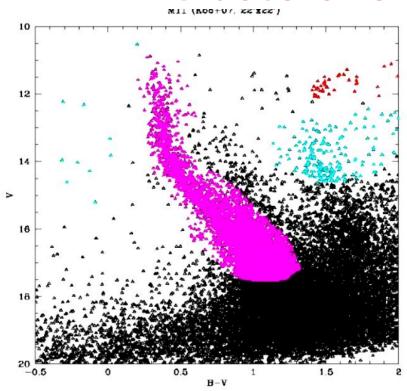
Catalog Validation

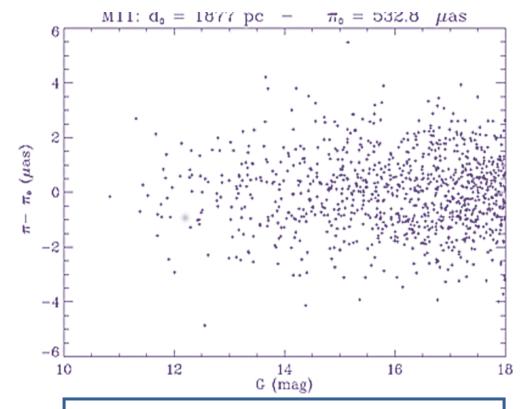
- Internal consistency checks
 - proper motion vs. distance
 - photometry vs. Spectroscopy
- Comparing to models and external data
 - detecting artifacts from the data processing
 - systematics in Gaia data
- Apply data mining techniques
 - identify outliers and unexpected correlations
 - identify and document expected correlations
- Special objects: clusters
- Cross method variability analysis
 - variability correlated with binary component separation
 - periodicities correlated with scanning law

Using Ocs for Catalog Validation

- Ocs are single stellar population: same age and metallicity
- large samples (10E2 -10E3) of stars having a 3D spatial spread of about 10 pc and a 3D velocity dispersion <1 km/s.</p>
- Ideal tests of Gaia astrometry, stellar parameters
- Cross match with external Catalogs+comparison with stellar models → ground based surveys
- Pleiades MS problem and 10% distance discrepancy: sistematics over 1 deg in Hipparcos data? (van Leewen 2009)

Table 1. Pleiades parallaxes (updated from Soderblom et al. 2005)


Method	$\pi_{\rm abs}$ (mas)	D (pc)	m-M	Ref.
Hipparcos all-sky $Hipparcos$ new reduction		118.3 ± 3.5 122.2 ± 1.9		2 7
Main-sequence fitting Allegheny Observatory parallaxes Interferometric orbit Dynamical parallax HST FGS parallax of 3 Pleiads	7.64 ± 0.43 7.41 ± 0.11 7.58 ± 0.11	131.9 ± 2.4 130.9 ± 7.4 135.0 ± 2.0 131.9 ± 3.0 134.6 ± 3.1	5.59 ± 0.11 5.65 ± 0.03 5.60 ± 0.05	1 3 4 5 6



Clusters for Validation: M11

NGC 6705 (Vallenari+2013)

D=1800 pc,

Age=250 -300Myr

Radius=6.2 pc

Conservative Intrinsic d

dispersion= 5 pc

Intrinsic $\sigma\pi=1.4\mu as$ << expected Gaia uncertainty at G>11 To be used up to 2-3 Kpc (Spagna 2013)

Gaia Data: Why do you have to wait so long

- Gaia is self-calibrating
 - iterative process to derive astrometric parameters, attitude and stellar parameters
- Gaia principles involve global astrometry: no immediate scientific data from single observations
 - Total commissioning phase: 4-6 months
 - at least one full sky coverage needed for an astrometric solution (positions) → at <u>least 6 months of data</u>
 - at least 18 months of data for a full astrometric solution but sampling might be not sufficient in many cases
- Colors must be known to achieve good accuracy → calibrated photometry
- Each data release requires time to go from DPAC internal database to public archive (3 Months)

Data release scenario

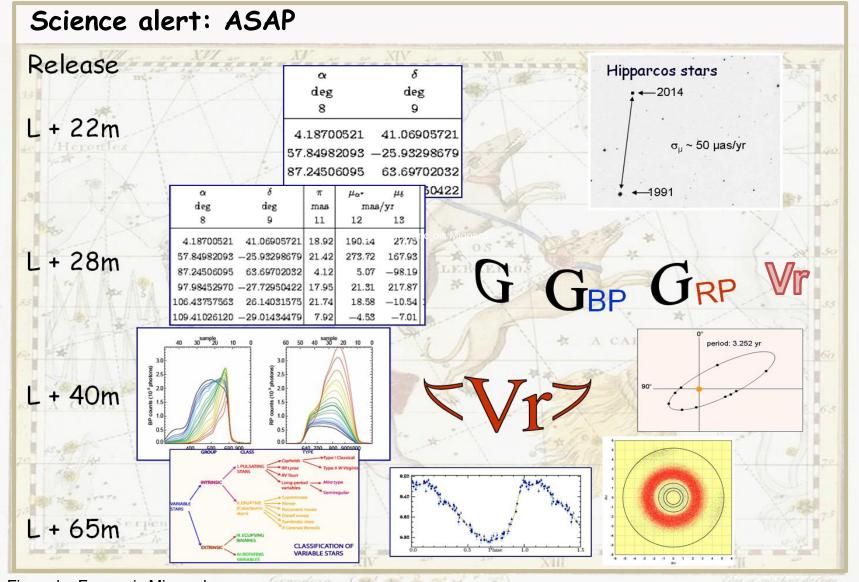


Figure by Franc, ois Mignard

Clusters in HTPM catalog

accuracy on pm (best case): 30 to 250 μas/yr, depending on the magnitude, with an average of 50 μas/yr (20 times better than the average 1000 μas/yr of the Hipparcos values)

- ♣ All OCs closer than 300 pc + the richest OCs up to 500 pc (19 objects, vanLeewen 2009)
- 150 stars in Hyades to 40-10 stars in distant OCs (V=12)
- ♣ 80 more candidates from Francis +2012
- Full sample of clusters in the second release+

Conclusions

- Gaia is approaching launch
- Final tests are going on
- DPAC is ready to deliver the promises of Gaia
- A paper will be published after commissioning to updatePerryman 2001

