The promise of the Gaia-ESO Survey for open cluster science

Sofia Randich INAF-Arcetri

Survey Co-PIs: Gerry Gilmore & Sofia Randich

350+ Co-Is (mostly from Europe, but not only) 90++ institutes

CREDIT AND THANKS!

The Gaia-ESO Survey

Co-PIs: Gerry Gilmore¹³⁷⁰, Sofia Randich¹³³⁵

Cols: M. Asplund¹⁴⁹⁰, J. Binney¹⁶¹¹, P. Bonifacio¹⁵⁸⁸, J. Drew¹⁶⁶⁸, S. Feltzing¹⁴⁷³, A. Ferguson¹⁶⁴⁹, R. Jeffries¹¹³², G. Micela¹³⁴⁴, I. Negueruela⁷⁶³⁹, T. Prusti¹²⁷⁸, H-W. Rix¹⁴⁸⁹, A. Vallenari¹³⁴³, U. Abbas¹³⁴⁶, D. Aden¹⁴⁷³, V. Adibekyan¹²⁰⁰, C. Aerts¹²⁹⁹, L. Affer¹³⁴⁴, J-M. Alcala¹³⁴⁰, E. Alfaro¹³⁹², C. Allende Prieto¹²⁹³, G. Altavilla⁵⁵³⁰, J. Alves¹⁸⁹³, T. Antoja¹⁴²², A. Aparicio¹¹⁹³, F. Arenou¹⁸⁸⁶, C. Argiroffi¹⁸⁶⁵, A. Asensio Ramos¹¹⁹³ C. Babusiaux¹⁵⁸⁵, C. Bailer-Jones¹⁴⁸⁹, L. Balaguer-Nunex¹⁸²¹, G. Barentsen¹⁶⁶⁵, A.Bayo¹²⁶¹, B. Barbuy¹⁸²⁸ G. Barisevicius¹³⁷⁶, D. Barrado y Navascues¹⁰⁸⁵, C. Battistini¹⁴⁷³, I. Bellas-Velidis¹⁸⁵⁵, M. Bellazzini¹³²⁹, V. Belokurov¹³⁷⁰, T. Bensby¹⁴⁷³, M. Bergemann¹⁴²⁰, G. Bertelli¹³⁴³, K. Biazzo¹³⁴⁰, O. Biensyme¹⁵⁸², S. Blanco Cuaresma¹⁵⁹², J. Bland-Hawthorn²⁰⁴⁴, R. Blomme¹⁶⁵⁰, C. Boeche²¹¹², S. Bonito¹³⁴⁴, S. Boudreault¹³⁶³, J. Bouvier¹⁴⁴⁹, A. Bragaglia¹³¹⁷, I. Brandao¹²⁰⁰, A. Brown¹⁷¹⁶, E. Brugaletta¹⁸⁷⁴, J. de Bruijne¹²⁷⁸, M. Burleigh¹²⁴⁴ J. Caballero⁸⁵⁴⁵, E. Caffau²¹¹², F. Cabura¹⁵³⁷, T. Cantat¹¹⁴³, R. Capuzzo-Dolcetta¹⁸⁵⁷, M. Caramazza¹¹⁴⁴. G. Carraro¹²⁶¹, L. Casagrande¹⁴⁹⁰, S. Casewell¹²⁴⁴, S. Chapman¹³⁷⁰, C. Chiappini¹¹³⁵, Y. Chorniy¹³⁷⁶, N. Christlieb¹⁹⁸², M. Cignoni⁷⁵¹⁰, G. Cocozza⁷⁵¹⁰, M. Colless¹⁰¹⁷, R. Collet¹⁴⁹⁰, M. Collins¹⁴⁸⁹, M. Correnti¹¹²⁹ M. Cottaar¹³⁷¹, E. Covino¹³⁴⁰, D. Crnojevic¹⁶⁴⁹, M. Cropper¹²⁴², P. Cruz Gamba¹⁰⁸⁸, M. Cunha¹²⁰⁰, F. Damiani¹³⁴⁴, M. David¹²³³, A. Delgado¹³⁵², E.Delgado-Mena¹²⁰⁰, R. Dorda Laforet⁷⁶⁰⁹, S. Duffau²¹¹², S. Van Eck¹²⁵⁸, B. Edvardsson⁶¹⁸¹, J. Eldridge¹³⁷⁰, H. Enke¹¹²⁵, K. Eriksson⁶¹⁸¹, N.W. Evans¹³⁷⁰, L. Eyer¹³⁷⁷, B. Farnacy¹⁵⁸², M. Fellhauer¹⁸²⁴, I. Ferreras¹²⁴², F. Figueras¹⁸²¹, G. Fiorentino¹⁴²², E. Flaccomio¹¹⁴⁴, C. Flynn²⁰⁴⁴ D. Folha¹²⁰⁰, E. Franciosini¹³²⁵, P. Francois¹⁵⁸⁸, A. Frasca¹³⁴¹, K. Freeman¹¹²⁹, Y. Fremat¹⁶⁵⁰, E. Friel¹³⁵⁵, B. Gaensieke¹²⁴¹, P. Galindo¹⁰⁸⁸, J. Gameiro¹²⁰⁰, F. Garxon¹³⁹³, M. Gebran ⁵⁷⁴¹, S. Geier⁵⁶⁷⁷, D. Geisler¹⁸²⁴ Gerhard¹⁴⁵⁶
 B. Gibson¹¹⁹⁷
 M. Gieles¹¹⁷⁰
 A. Gomboc¹⁹⁹⁵
 A. Gomez¹⁵⁸⁶
 C. Gonzalez-Fernandez⁷⁶⁰⁹ J.I. Gonzalez Hernandez¹³⁹¹, E. Gosset¹³⁵⁹, E. Grebel²¹¹², R. Greimel¹⁴²³, M. Groenewegen¹⁶⁵⁰, J Groh¹⁴⁹⁴ F. Grundahl¹¹⁶⁸, P. Gruyters⁶¹⁸¹, M. Guarcello¹³¹², B. Gustafsson⁶¹⁸¹, P. Hadrava¹¹¹⁶, T. Hansen¹⁹⁸², D. Hatzidimitriou¹⁵⁵⁹, N. Hambly¹⁶⁴⁹, P. Hammersley¹²⁵⁸, C. Hansen²¹¹², M. Haywood¹⁵⁶⁸, U. Heber⁵⁶⁷⁷, U. Heiter⁶¹⁸¹, E. Held¹³⁴³, A. Helmi¹⁴²², G. Hensler¹⁸⁶³, A. Herrero¹³⁶³, V. Hill¹⁵⁶¹, S. Hodgkin¹⁵⁷⁰, N. Huelamo⁸⁵⁴⁵ A. Huxor²¹¹², R. Ibata¹⁵⁸², M. Irwin¹³⁷⁰, H. Jacobson¹⁴⁸¹, R. Jackson¹¹³², P. Jofre¹⁵⁹², R. de Jong¹¹³⁵ P. Jonker¹⁶⁶⁰, S. Jordan²¹¹², C. Jordi¹⁸²¹, A. Jorissen¹³⁵⁸, N. Kacharov¹²⁴⁴ D. Katz¹⁵⁶⁸, D. Kawata¹³⁴², S. Keller¹¹³⁹, N. Kharchenko¹¹³⁵, R. Klement¹⁴⁶⁹, A. Klutsch¹⁸⁰³, J. Knude¹⁹⁶⁵, A. Koch¹²⁴⁴, O. Kochukhov⁶¹⁸¹ M. Kontizas¹⁵⁶⁰, S. Koposov¹³⁷⁰, G. Kordopatis¹³⁷⁰, A. Korn⁵¹⁸¹, A. deKoter¹⁶¹⁴, P. Koubsky¹¹¹⁶, A. Lanzafame¹⁸⁷⁴, R. Lallement¹⁵⁶⁸, C. Lardo¹³³⁷, P. de Laverny¹⁵⁹¹, F. van Leeuwen¹³⁷⁰, B. Lemasle¹⁴²², G. Lewis²⁰⁴⁴, K. Lind¹⁴⁶⁰, H.P.E. Lindstrom¹⁹⁶⁶, A. Lobel¹⁵¹⁹, J. Lopez Santiago¹⁸⁶³, P. Lucas¹⁸⁶⁵, H. Ludwig²¹¹², T. Lueftinger¹⁸⁵³, L. Magrini¹³³⁵, L. Mahy¹³⁵⁹, J. Maiz Apellaniz¹³⁹², J. Maldonado¹⁸⁰³, M. Mapelli¹³⁴³, G. Marconi¹²⁶¹, A. Marino¹⁴⁹⁰, S. Marinon¹¹³⁷, C. Martayan¹²⁶¹, S. Martell¹⁰¹⁷, I. Martinez-Valpuesta¹⁴⁹⁶, T. Masseron¹³⁵⁸, G. Matijevic¹⁵⁰⁵, R. McMahon¹³⁷⁰, S. Messina¹³⁴¹, M. Meyer¹³⁷⁷, A. Miglio¹³⁵⁹, S. Mikolaitis¹³⁷⁶, I. Minchev¹¹²⁵ D. Minniti¹⁸⁰¹, A. Moitinho¹⁸⁴⁸, Y. Momany¹²⁶¹, L. Monaco¹²⁶¹, M. Montalto¹²⁰⁰, M.J. Monteiro¹²⁰⁰, R. Monier⁵⁶⁹⁵, D. Montes¹⁸⁰³, A. Mora¹³⁵⁰, E. Moraux¹⁴⁴⁹, T. Morel¹¹⁵⁹, J. Muijos⁵⁶⁸⁸, N. Mowlavi¹⁵⁸³, A. Mucciarelli⁷⁵³⁰, U. Munari¹³⁴³, R. Napiwotzki¹⁶⁶⁸, N. Nardetto¹⁵⁹¹, T. Naylor¹¹³⁰, Y. Naze¹³⁵⁹, G. Nelemans¹⁶³⁸ S. Okamoto¹⁶¹⁶, S. Ortolani⁶⁵¹¹, G. Pace¹²⁰⁰, F. Palla¹³¹⁵, J. Palous¹¹¹⁶, E. Pancino¹³¹⁷, R. Parker¹³⁷⁷, E. Paunzen¹⁸⁹³, J. Penarrubia¹⁸²⁵, I. Pillitteri¹³¹², G. Piotto¹¹⁴ⁱ, H. Posbie¹⁵⁸⁶, L. Prisinzano¹³⁴⁴, N. Przybilla¹²⁵¹ L.Puspitarini¹⁵⁸⁵, E. Puzeras¹¹⁷⁶, A. Quirrenbach²¹¹², S. Ragaini⁷⁵³⁰, P. Re Fiorentin¹³⁴⁶, J. Read¹³⁷⁷, M. Read¹⁶⁴⁹, A. Recio-Blanco¹⁵⁹¹, C. Reyle¹⁵⁹², J. De Ridder¹³⁶⁹, N. Robichon¹⁵⁸⁵, A. Robin¹⁵⁹², S. Roeser²¹¹² D. Romano¹³¹⁷, F. Royer¹⁵⁶⁸, G. Ruchti¹⁴⁵⁰, C. Ruhland¹⁶⁶⁸, A. Ruzicka¹¹¹⁶, S. Ryan¹⁶⁶⁸, N. Ryde¹⁴⁷³, G. Sacco¹⁶⁴⁵, H. Sana N. Santos¹²⁰⁰, J. Sanz Forcada⁸⁵⁴⁵, L.M. Sarro Baro⁵⁶⁸⁸, L. Sbordone¹⁶⁶², E. Schilbach²¹¹², S. Schmeja²¹¹², O. Schnurr¹¹²⁵, R. Schoenrich¹⁴⁹⁰, R.D. Scholz¹¹³⁵, G. Seabroke¹²⁴², P. Sestito¹⁸⁰³, S. Sharma²⁰⁴⁴ G. De Silva¹⁰¹⁷, R. Smiljanie¹²⁵⁸, M. Smith¹⁶¹⁶, J. Sobeck¹⁵⁹¹, E. Solano⁸⁵⁴⁵, R. Sordo¹³⁴¹, C. Soubiran¹⁴⁴⁴ S. Sousa¹²⁰⁰, A. Spagna¹³⁴⁶, L. Spina¹³³⁵, M. Steffen¹¹³⁵, M. Steinmetz¹¹²⁵, B. Stelzer¹³⁴⁴, E. Stempels⁶¹⁸¹, H. Tabernero¹⁸⁰¹, G. Tautvaisiene¹³⁷⁶, F. Thevenin¹⁵⁹¹, J. Torra¹⁸²¹, M. Tosi¹⁵³⁷, E. Tolstoy¹⁴²², M. Tsantaki¹²⁰⁰ C. Turon¹⁵⁸⁸, M.Valentini¹³⁵⁹, M. Walker¹³¹², N. Walton¹³⁷⁰, J. Wambsganss²¹¹², C. Worley¹⁵⁹¹, N. Wright¹⁶⁸⁸ K. Venn²⁰⁶¹, J. Vink¹¹¹¹, R. Wyse¹⁴¹⁹, S. Zaggia¹⁵⁴¹, W. Zeilinger¹⁸⁹³, M. Zoceali¹⁸⁰¹, J. Zoree¹³⁶¹, D. Zucker¹⁴⁷⁷ T. Zwitter¹⁹⁹⁵

OUTLINE

Survey overview:

- main characteristics and products
- top level scientific goals (clusters)
- targets (focus on clusters)
- Progress and status
- □ First results (focus on clusters)

Overview

GAIA-ESO SURVEY IN A NUTSHELL (1/3)

 Large <u>Public</u> Spectroscopic Survey – FLAMES
 300 (240+60) nights over 5 (4+1) years; 12/2011 (P88) - 9/2016 (P97)++; <u>VM</u>

10⁵ stars.
All populations of the MW:
Halo
Bulge
Thick & Thin discs
Open clusters

GAIA-ESO SURVEY IN A NUTSHELL (2/3)

Giraffe, 132 fibers R=16000-25000, H3...H21 403-476...848-900 V<19, S/N > 10-15

UVES, 8 fibers R=42,000, 520/580 nm 416-617/475-678 V<16.5, S/N > 30

GAIA-ESO SURVEY IN A NUTSHELL (3/3)

➢ Giraffe and UVES spectra → Products

- RVs (\rightarrow to 0.2 km/s), variability, vsini
- APs, [Fe/H], [X/Fe] (Li, α, Fe-peak, s-,..)
- stellar properties (M_{acc} , \dot{M} , etc.)

Uniform analysis: → homogeneous overview of the distributions of kinematics and element abundances in the Galaxy

OPEN CLUSTER SCIENCE

- Cluster formation and dynamics: constrain theories of star formation through internal kinematics (complement Gaia pm & DANCe)
- Stellar evolution: spectroscopy to test, calibrate, and refine models (CMD \rightarrow HRD)
- Thin Disc and Solar Neighbourhood: trace chemical evolution as a function of age and Galactocentric radius
- + Legacy science

OCs IN THE GAIA-ESO SUPVEY

Y

Master cluster list: ~90 clusters Intermediate-age and old clusters (0.1 - 8 Gyr)

> Both nearby (< 1.5 kpc) and distant ones, range in [Fe/H], density, mass, ...

OCs IN THE GES

TARGET SELECTION IN OCs

- \rightarrow O \rightarrow M dwarfs; (P)MS \rightarrow evolved stars
- Devised as to optimize the top level science goals ->
 - Giraffe: **unbiased**, not tailored on the individual clusters, also external regions, as complete as possible, or representative samples. Mainly based on photometry
 - UVES: biased, focus on high probability members

TARGET SELECTION IN OCs

TARGET SELECTION IN OCs

known members (140)
phot. candidates (530) from 2MASS

Cha I (2-3 Myr, 160 pc) spatial selection

PROGRESS UPDATE

SURVEY PROGRESS

- ✓ 20 observing runs completed (100+ nights); about 85 % of time useful. Large variety of targets observed, including 17 clusters, several MW fields, several <u>calibration targets</u> (GCs, benchmark stars, COROT RGs, etc.)
- ✓ 7/2013: first analysis cycle completed → internal release of APs and abundances for the first 6 month spectra
- ✓ 7/2013: first 18 month spectra, along with RVs and photometry (iDR2)→ second analysis cycle

SURVEY PROGRESS

- ✓ 8/2013: first release of spectra to ESO archive (6 month, good quality, completed targets →~4000 objects)
- ✓ Beginning of 2014: completion of iDR2 analysis → internal release of APs and abundances
- ✓ 7/2014 (?): next release to ESO
- ✓ 4/2013: first science consortium meeting

OBSERVED CLUSTERS

UVES SPECTRA

GIRAFFE SPECTRA

Results

PRESENTED AT THIS MEETING

R. Blomme - Massive stars
L. Magrini - Chemical tagging
T. Cantat-Gaudin - Radial gradient
R. Sordo - Stellar evolution
L. Sampedro - Membership in GES

YOUNG CLUSTER KINEMATICS

Jeffries et al., Franciosini et al (2013)

A METAL RICH STAR IN GAMMA VEL

THE INNER RADIAL METALLICITY GRADIENT

Last 10-15 years several studies focusing on the gradient (Bragaglia, Carraro, Friel, Magrini, Pancino, Randich, Yong), but understanding of the disk gradient is:

-limited/biased by too small or too inhomogeneous cluster samples

- -based on clusters with too few members/ too large errors
- largely ignoring possible radial migration effects

THE INNER RADIAL METALLICITY GRADIENT

SUMMARY

- GES is meeting its ambitious goals
- First results show the potential of the GES
- First science papers will appear over the next few months
- GES end data taking >2016++? gives overlap with first Gaia data release. Combined → full 6D phase space f(x,y,z,v_x,v_y,v_z), plus AP, and chemistry for a very large number and variety of stars: core science plus legacy science

ORGANIZATION, DATA FLOW, ANALYSIS

SPECTRUM ANALYSIS

- Gaia-ESO explicitly includes all proven abundance methodologies (but same linelist and model atmospheres) → systematics + a wide range of techniques is essential to cover the range of stellar types →
 homogeneization
- Calibration targets: internally consistent scale and understood external scale