Dynamical evolution of clusters and the influence of binaries

Richard Parker

Institute for Astronomy, ETH Zürich, Switzerland

Collaborators: Michael Meyer (ETH Zürich)
Simon Goodwin (Sheffield, UK)
Nick Wright (Hertfordshire, UK)
Open questions:

1. What fraction of stars form in clusters?
 • What is a cluster?
Open questions:

1. What fraction of stars form in clusters?
 • What is a cluster?
2. Or, what fraction of stars end up in clusters?
Open questions:

1. What fraction of stars form in clusters?
 - What is a cluster?
2. Or, what fraction of stars end up in clusters?
3. Do star clusters contribute to the Galactic field?
Open questions:

1. What fraction of stars form in clusters?
 - What is a cluster?
2. Or, what fraction of stars end up in clusters?
3. Do star clusters contribute to the Galactic field?
4. Can we determine the initial conditions of star formation?
Open questions:

1. What fraction of stars form in clusters?
 • What is a cluster?
2. Or, what fraction of stars end up in clusters?
3. Do star clusters contribute to the Galactic field?
4. Can we determine the initial conditions of star formation?
5. Can Gaia (and surveys) help?
What is a star cluster?

- Define based on a surface density threshold:
 - Lada & Lada (2003): 3 stars pc$^{-2}$
 - Gutermuth et al. (2009): 60 stars pc$^{-2}$
 - Bressert et al. (2010): “dense clusters” – 200 stars pc$^{-2}$
What is a star cluster?

- “Bound” versus “unbound” (e.g. Gieles & Portegies Zwart 2011)
- Define based on crossing time:

\[T_{cr} \equiv 10 \left(\frac{R_{\text{eff}}^3}{GM} \right)^{1/2} \]
The birthplace of clusters?

- Star-forming cores observed in filaments (e.g. Andre et al 2010, Herschel) – low velocity dispersion
- Filaments intersect at “hubs” (Myers 2012)
Clustered star formation

Trapezium/ONC
(M. McCaughrean/ESO 2001)
Clusters versus associations?

Hot

Cool

Universal initial conditions?
What can we measure?

- Initial mass function
- Binary properties (overall fraction, mass ratio, separation)
- Cluster structure/morphology
- Mass segregation
- Local surface density
- Velocity dispersions
What can we measure?

• Initial mass function
• Binary properties (overall fraction, mass ratio, separation)

• Cluster structure/morphology
• Mass segregation
• Local surface density
• Velocity dispersions
Clusters: structure and morphology

- Divides mean MST length by mean separation length
 \[Q = \frac{\bar{m}}{\bar{s}} \]
- \(Q > 0.8 \) = radially concentrated
- \(Q < 0.8 \) = substructured
- Many young star-forming regions substructured (e.g. Sanchez & Alfaro (2009))
Clusters: structure and morphology

- Divides mean MST length by mean separation length

\[Q = \frac{\bar{m}}{\bar{s}} \]

- \(Q > 0.8 \) = radially concentrated
- \(Q < 0.8 \) = substructured
- Many young star-forming regions substructured (e.g. Sanchez & Alfaro (2009))
Substructure

(a) Plummer \((Q=1.1)\) (b) fractal \((Q = 0.4)\)
Mass segregation

Allison et al (2009)
(also Maschberger & Clarke 2011, Olczak et al 2011)

\[\Lambda_{MSR} = \frac{\langle l_{\text{norm}} \rangle}{l_{\text{massive}}} \pm \frac{\sigma_{\text{norm}}}{l_{\text{massive}}} \]
Mass segregation

(M. McCaughrean/ESO 2001)

\[\Lambda_{\text{MSR}} = \frac{\langle l_{\text{norm}} \rangle}{l_{\text{massive}}} \pm \frac{\sigma_{\text{norm}}}{l_{\text{massive}}} \]

Allison et al (2009)
N-body simulations

- Cool and clumpy (Virial ratio = 0.3, fractal dimension 1.6)
- Hot and clumpy (Virial ratio = 1.5, fractal dimension 1.6)
- Tepid and smooth (Virial ratio = 0.5, fractal dimension 2.6)

- Simulations: 1500 stars in a cluster
- Maschberger (2013) IMF
- Evolved for 10 Myr with **Starlab** (Portegies Zwart et al 1999)
 a) All single stars
Evolution of structure and morphology

- Measuring structure - evolution of the Q-parameter in a collapsing (cool) fractal cluster:

 - Dynamics rapidly erases substructure (Scally & Clarke 2002; Goodwin & Whitworth 2004; Parker & Meyer 2012; Parker, Wright, Goodwin & Meyer, submitted)
Evolution of structure and morphology

• Measuring structure - evolution of the Q-parameter in a collapsing (cool) fractal cluster:

• Dynamics rapidly erases substructure (Scally & Clarke 2002; Goodwin & Whitworth 2004; Parker & Meyer 2012; Parker, Wright, Goodwin & Meyer, submitted)
Supervirial stochasticity
Measuring structure - evolution of the Q-parameter in an unbound (hot) association:

Evolution of structure and morphology (Parker & Meyer 2012; Parker, Wright, Goodwin & Meyer, submitted)
Evolution of structure and morphology

- Measuring structure - evolution of the Q-parameter in an unbound (hot) association:

(Parker & Meyer 2012; Parker, Wright, Goodwin & Meyer, submitted)
Structure versus mass segregation

(Parker, Wright, Goodwin & Meyer, submitted)
Structure versus mass segregation

Different dynamical histories?

Blue: Ber96
Red: Ber94

(Delgado et al 2013)
Using surface density to probe evolution

The Σ – m technique (Maschberger & Clarke 2011):
- Determine the local density of every star.
- Compare to the local density of the massive stars:

\[\Sigma_{\text{LDR}} = \frac{\Sigma_{\text{massive}}}{\Sigma_{\text{cluster}}} \]

(Parker, Wright, Goodwin & Meyer, submitted)
Structure versus surface density

Dense and cool

Dense and hot

(Parker, Wright, Goodwin & Meyer, submitted)
Structure versus surface density

Evolution of a low-density region

- + 0 Myr
- o 1 Myr
- x 5 Myr
The influence of binaries

- Single stars
- Primordial binaries
Removing outliers

Single stars

primordial binaries
Cool & clumpy; 0Myr

(Allison 2012)
Tepid & smooth; 0Myr

(Allison 2012)
Cool & clumpy; 4Myr

(Allison 2012)
Tepid & smooth; 4Myr

(Allison 2012)
Ejected stars with *Gaia*

- Define an ejection:
 - velocity magnitude > escape velocity
 - radial velocity > tangential velocity
 - position is beyond a cropping distance
(moving fast enough, in right direction, and far enough away)
Ejected velocities; 4Myr

(Allison 2012)
Primordial binaries

Fractional number of ejected stars

Tepid & smooth
Cool & clumpy

Velocity (km/s)
Summary

• Different initial conditions for star formation give very different spatial distributions in clusters/associations

• Strong dynamical evolution betrayed by mass segregation and high local surface densities around massive stars

• More observational data would be very helpful 😊

• What will Gaia (and ground-based surveys) give us?