Globular cluster stars in the Galactic halo

Sarah Martell Australian Astronomical Observatory

The starting point

Globular clusters dissolve

Odenkirchen et al. 2003

What's the signal?

Unique but universal GC abundance pattern He N O, F Na Mg AI, Si

The initial project

Look for CN-strong field stars

Most likely to succeed?

- Not really, at the start
 - Previous searches had not found any cluster-like stars in the field
 - Pilachowski et al. 1996, Gratton et al. 2000
 - Method was hopelessly inefficient
 - Side project during thesis observing

SDSS changes everything

- SEGUE: Spectroscopic extension of the SDSS, targeted at specific stellar populations
 - Low-metallicity stars
 - BHB stars
 - G, K dwarfs
 - K giants
- 640-fiber spectrograph, 7 deg² field of view, R~2000, broad wavelength coverage
 - 360,000 stars

SEGUE imaging blue, SDSS orange

Looking at the data

"Chemical tag" of GC formation

Martell & Grebel 2010

Martell et al. 2011

"Chemical tag" of GC formation

- Carretta et al. 2010
 - Collected literature data for halo+thick disk+bulge stars, found six with high [Na/Fe]
- Ramirez et al. 2012
 - Collected spectra for low-α dwarfs from Nissen & Schuster halo sample, found 2/67 with low [O/Fe] and high [Na/Fe]

First interesting thing

- What fraction of halo stars formed in globular clusters?
 - Cluster formation process
 - How stars were transferred from clusters to the field
 - If CN-strong stars in the field are from completely dissolved clusters and the initial/final mass ratio is 10:
 - At least 17% of halo stars formed in globular clusters
 - That's a minimum: we can't observe stars from clusters that didn't self-enrich

Recent interesting thing

- Look at the orbits
 - We noticed that the CN-strong stars had a smaller typical distance from the Galactic center

Terminology!

- "Inner/outer halo population" versus "inner/outer halo region"
- Definitions based on orbits/based on present positions, with significant overlap

IHP: MDF peaked at [Fe/H] ~ -1.6, mainly located within ~20 kpc IHR: located between 5 and 15-20 kpc, where the IHP dominates at -2< [Fe/H] < -1 OHP: MDF peaked at [Fe/H] ~ -2.2, mainly located beyond ~20 kpc OHR: located beyond 20 kpc, where OHP dominates at [Fe/H]

< -2.0

- This is useful when thinking about halo assembly
 - Indicates separate formation processes cosmological origin
 - Numerical work by Tissera et al. 2013, Font et al. 2011

Look at the orbits

Z_{max}, rotational velocity, eccentricity match well to inner halo

Carollo, SLM et al. 2013

Look at the orbits of GCs

 Clusters with proper motions from Cassetti-Dinescu, [Fe/H]<-1.5 (to match the field stars)

Also consistent with inner halo population

Next interesting thing

Double-check the chemistry

- We assume that the O-Na pattern follows the C-N pattern, but typically can't check
 - Different reactions: CNO (>20 MK), NeNa (>35 MK), MgAl (>50 MK) cycles
 - Mg-Al doesn't always follow (Bastian et al. 2013)

Chemistry check

High-resolution followup on CN-strong field stars (with M. Shetrone, D. Lai)

- 24 CN-strong stars plus 16 CN-normal "control" stars observed at HET, plus 5 at Keck
- Preliminary analysis: as expected
- Full abundance analysis nearly complete

Chemistry check

- Working in the other direction (with S. Campbell, J. Simpson)
 - Low-resolution spe [N/Fe] for stars with
 - Ongoing: no conclu
 - I would guess that

