Study of Stellar Clusters Containing Massive Stars

Mayte Costado IAA-CSIC Stellar Systems Group

- Project objectives
- The photometric membership method
- The survey
- Two specific examples

gaia

- Better understanding of the formation of stellar clusters and massive stars
- Try to discriminate between the different scenarios proposed for the formation of massive stars
- The success of different scenarios will depend on their location in the galaxy and on the environment where they are born
- The whole stellar population will be strongly influenced by the dominant mechanism in the formation of its highest mass stars

Project Objectives

✤ Massive stars properties → GOSSS (Sota et al. 2011, ApJS, 193, 24) http://ssg.iaa.es/en/content/galactic-o-star-catalog

Young open clusters showing wide mass range are excellent labs for studying the formation of stellar cluster

Clusters selection:

- in two environments: isolated clusters and inside large star formation region
- Distributed in different parts of the galactic disk

• Determination of the Spectral Energy Distribution (SED) of star, from multiband $UBVRIH\alpha + JHKs$ photometric survey:

- Stellar population Post MS + MS + PMS + field
- Obtaining the physical parameters
- Infrared excess for the study of circumstellar disks and extinction law

Delgado et al. 2007, A&A, 467, 1397

• Determination of the Spectral Energy Distribution (SED) of star, from multiband $UBVRIH\alpha + JHKs$ photometric survey:

- Stellar population Post MS + MS + PMS + field
- Obtaining the physical parameters
- Infrared excess for the study of circumstellar disks and extinction law
- Determine the MF of the cluster
- Study the spatial distribution (Q parameter)

Sánchez & Alfaro 2010, LNEA, 4, 1

Presence or not of mass segregation

The photometric membership method

Delgado et al. 2007, A&A, 467, 1397; Delgado et al. 2011, A&A, 531, 141

- The method has the following stages:
 - 1. Comparing the ZAMS with the upper part of the CMDs, PostMS and MS members are assigned

- a) MS members \rightarrow average values of E(B-V) and DM (distance)
- b) PostMS members → estimation of cluster age

The photometric membership method

Delgado et al. 2007, A&A, 467, 1397; Delgado et al. 2011, A&A, 531, 141

The method has the following stages:

- 1. Comparing the ZAMS with the upper part of the CMDs, PostMS and MS members are assigned
- To determine membership to PMS candidates we use 4 PMS isochrones models (D'Antona & Mazzitelli (1997), Palla & Stahler (1999), Siess et al. (2000) and Yi et al. (2001))
- 3. For each isochrone and for each candidate, we calculate the distance between them. The candidate is assigned as member when:
 - a) one or more of these calculated distances is in agreement with the average distance estimated in at least 3 CMDs
 - b) with photometric errors in V and in all color indices < 0.05 mag

We have mass and age for the cluster members

All clusters in the survey were selected according to the following criteria:

- Age < 30 Myr
- Reddening E(B-V) < 1.0 mag
- Particular attention to poorly observed clusters
- Two environments: isolated and inside large star formation region
- Telescopes:
 - OPTICAL: Cerro Tololo (1m, ANDICAM), OSN (1.5m, CCD) & INT (2.5m, WFC) & NOT (2.5m, ALFOSC)
 - NIR: NOT (2.5m, NOTCam) & CAHA (3.5m, OMEGA2000)

Current database mainly southern clusters (11). Extension to northern with 16 additional clusters (3 pub. + rest under study)

Current database containing 11 southern clusters is available online at <u>http://ssg.iaa.es/en/content/photometric-catalog-11-young-open-clusters-southern-hemisphere</u>

NGC 2362, NGC 2367, NGC 3293, Collinder 228, Hogg 10, Hogg 11, Trumpler 18, NGC 3590, NGC 4103, NGC 4463, NGC 5506

In a short time we will update with 3 published northern clusters

- Sh2-285 = Dolidze 25 (Delgado et al. 2010, A&A, 509, 104)
- Berkeley 94 and Berkeley 96 (Delgado et al. 2013, MNRAS, 435, 429)

Berkeley 94 and Berkeley 96

- Located at Perseus Arm
- ALFOSC ; optical study (UBVRIHa) ; FoV 6.5 x 6.5 arcmin²; V=22
- NOTCAM ; near infrared study (JHKs) ; FoV 4 x 4 arcmin²; J=19.5
- Membership analysis
- Spatial Distribution
- Mass distribution
- Mass segregation

Delgado et al. 2013, MNRAS, 435, 429

CLUSTER(n ame)	RA (hms)	DEC (dms)
Berkeley 94	22:22:42	+55:51:00
Berkeley 96	22:29:24	+55:24:00

Berkeley 94 and Berkeley 96

- First deep photometric study (5907 stars)
- NIR-excess sources in (H-Ks)
- Slope of mass distribution in agreement with Salpeter MF slope
- Different spatial distribution
- Mass segregation in both clusters
- Comparing with theoretical models (Parker & Meyer 2012), we can suggest different initial conditions and formation processes

CLUSTER	Log Age	E(B-V)	d	Mem	
Berkeley 94	7.5	0.62	3.9	227	
Berkeley 96	7.0	0.58	4.3	295	

Observations current state

NAME OBJECT	RA (hms)	DEC (dms)	OPTICAL	NIR	LOG AGE (yr)	DISTANCE (kpc)	E(B-V)	
IC 1805	02:32:47	+61:29:29	yes	yes	6.2	2.4	0.8	
IC 1848	02:49:20	+60:34:30	yes	-	6.8	2.0	0.6	1
Alicante 1	03:59:10	+57:14:00	yes	yes	6.5	4.0	0.6	
NGC 1502	04:07:50	+62:19:51	-	-	7.0	0.8	0.7	
SH2-211	04:36:57	+50:52:36	yes	-	-	5.1	-	
NGC 1893	05:22:42	+33:25:00	yes	yes	6.6	3.3	U.6	
NGC 1931	05:31:27	+34:14:54	yes	-	7.0	3.1	0.7	
NGC 2244	06:31:54	+04:56:00	yes	-	6.9	1.4	0.4	2a
NGC 6823	19:43:09	+23:18:00	yes	yes	6.8	1.9	0.8	
Collinder 419	20:17:48	+40:41:30	yes	yes	6.8	0.7	0.3	
Dolidze 8	20.24.21	+12.12.21	VAS	VAS	_	_	_	1
	20.24.21	+42.13.34	yes	yes	_	_	-	12
NGC7235	22:12:25	+57:16:10	-	-	7.1	2.8	0.8	20 100
	23:15:13	+60:26:20	-	-	7.1	2.1	0.^	1
	The Wo	orld of Clusters	s. Padova, 2	3-26 Sep	tember 2013			gai

Located at Perseus Arm

- Associated to emission nebula
- Optical study (UBVRIHa) with 4 pointings ; FoV 196 arcmin² ; 1978 observed stars ; V=22
- Near infrared study (JHKs) with 4 pointings ; FoV 55 arcmin²; 2393 observed stars ; J=21
- Distance = 2.8 kpc (DM=12.25)
 E(B-V) = 0.84 mag
 Log Age (yr) = 6.5

Study of Stellar Clusters Containing Massive Stars

Thanks for your atention !!

Berkeley 94 and Berkeley 96

- A parameter (Allison et al 2009) allow to quantify the degree of mass segregation (MSG) and to examine how MSG change for different masses ranges
- ❖ Values close 1 → absence MSG
 Values > 1 → presence mass concentration
- MSG in both clusters (more concentrated distribution for higher mass stars)
- ◆ Berkeley 94 (Q≈0.70, red circles)→ high degree substructure
 Berkeley 96 (Q≈0.96, blue squares) → radial

structure

Collinder 228 & NGC 3293

Delgado et al. 2007, A&A, 467, 1397; Delgado et al. 2011, A&A, 531, 141

CLUSTER(name)	RA (hms)	DEC (dms)	Members	E(B-V)	DM	Log Age	MF
Collinder 228	10:43:01	-60:00:45	321/2724	0.32	12.0	6.7	-1.93
NGC 3293	10:35:49	-58:13:28	319/1337	0.29	12.0	6.8	-0.64
Filters UBV	/RI. V=19			10 12 14		a star	

$\delta \log N_M / \delta \log M = -1.35$

- The fletter slope are reflected of low ratio between number of PMS members and the total member number
- NGC 3293 contains a large number of massive stars

The World of Clusters. Padova, 23-26 September 2013

gaia