Asteroseismology of the Open Clusters NGC 6791, NGC 6811, and NGC 6819 from 19 months of Kepler photometry

Enrico Corsaro
Postdoctoral Research Associate at IvS K.U. Leuven
Enrico.Corsaro@ster.kuleuven.be

Collaborators:
Kepler Asteroseismic Science Consortium Members
• Highlights in OCs NGC 6791, 6811 & 6819
 Mass and Age, T_{eff} and Metallicity, Mass loss, Rotation, Membership study

• What we expect from Red Giants
 RGB Oscillations
 Asteroseismic parameters and their relation to stars’ fundamental properties

• Ensemble results from 19 months photometry
 ε and C-D diagrams, Ensemble échelle diagrams, Linewidths, Period spacings of mixed dipole modes
Section 1

Highlights in Open Clusters
OCs General Properties

 NGC 6791 extremely old
 Average mass of RGB stars:
 \(M_{\text{RGB}} = 1.15 \pm 0.02 \, M_\odot \)
 Age: \(\sim 8.3 \, \text{Gyr} \)

 NGC 6819 middle aged
 Average mass of RGB stars:
 \(M_{\text{RGB}} = 1.68 \pm 0.03 \, M_\odot \)
 Age: between 2 and 2.4 Gyr

Mass & Age

Adapted from Stello et al. 2011b
OCs General Properties

 with eclipsing binaries
 NGC 6791 extremely old
 Average mass of RGB stars: $M_{\text{RGB}} = 1.15 \pm 0.02 \, M_\odot$
 Age: ~ 8.3 Gyr

 with asteroseismic grid fitting
 NGC 6819 middle aged
 Average mass of RGB stars: $M_{\text{RGB}} = 1.68 \pm 0.03 \, M_\odot$
 Age: between 2 and 2.4 Gyr

- **NGC 6811** young, only red clump (RC) stars
 Average mass of RC stars: $M_{\text{RC}} = 2.35 \, M_\odot$
 Glushkova, E. V. et al, AstL, 25, 86
 Age = 0.7 ± 0.1 Gyr

Mass & Age

__Highlights in Open Clusters__
- What we expect from Red Giants
- Ensemble results from 19 months photometry
- Conclusions
OCs General Properties

Metallicity

- **NGC 6791** metal rich
 \[\frac{\text{Fe}}{\text{H}} = 0.29 \pm 0.03 \text{ (random)} \pm 0.07 \text{ (systematic)}\]

- **NGC 6819** solar metallicity
 \[\frac{\text{Fe}}{\text{H}} = 0.09 \pm 0.03\]

Bruntt et al. 2012
Molenda-Zakowicz et al. 2013

- **NGC 6811** \sim{} solar metallicity

Mass loss

- Direct estimates of mass loss rates for NGC 6791 and NGC 6819

- **NGC 6791** significant mass loss
 \[\Delta M = 0.09 \pm 0.03 \text{ (random)} \pm 0.04 \text{ (systematic)} M_\odot\]

- **NGC 6819** no mass loss
 \[\Delta M = -0.03 \pm 0.04 M_\odot\]

Rotation

- Study of stellar rotation in **NGC 6811**
 Periods \sim{} 11 days in early K-type
Membership study

- Membership study of the Red Giants from color-magnitude diagrams (CMD)
- Identification of targets with evidence of RGB oscillations

- Amplitude estimates for oscillations in the three OCs

Our sample of 115 Red Giants observed by Kepler

60 RGs for **NGC 6791** (RGB and RC)
5 RGs for **NGC 6811** (only RC)
50 RGs for **NGC 6819** (RGB and RC)
Section 2

What we expect from Red Giants

...see also Josefina’s talk
Pressure modes (p modes) (Solar-like Oscillations)

Vandakurov 1968; Tassoul 1980; Gough 1986

\[\nu_{n,\ell} = \Delta \nu \left(n + \frac{\ell}{2} + \epsilon \right) - \delta \nu_{0,\ell} \]
Pressure modes (p modes)
(Solar-like Oscillations)

Vandakurov 1968; Tassoul 1980; Gough 1986

\[\nu_{n,\ell} = \Delta \nu(n + \ell/2 + \epsilon) - \delta \nu_{0,\ell} \]

\[\Delta \nu \propto \sqrt{\rho} \]

\[\nu_{\text{max}} \propto g/T_{\text{eff}} \]

as the star evolves

\[l = 3, m = 1 \]

\[l = 3, m = 2 \]
Pressure modes (p modes)
(Solar-like Oscillations)

Vandakurov 1968; Tassoul 1980; Gough 1986

\[\nu_{n,\ell} = \Delta \nu (n + \ell/2 + \epsilon) - \delta \nu_{0,\ell} \]

\[\Delta \nu \propto \sqrt{\rho} \]

\[\nu_{\text{max}} \propto g/T_{\text{eff}} \]

as the star evolves

Stochastic excitation and damping
Pressure modes (p modes)
(Solar-like Oscillations)

Vandakurov 1968; Tassoul 1980; Gough 1986

\[\nu_{n,\ell} = \Delta \nu (n + \ell / 2 + \epsilon) - \delta \nu_{0,\ell} \]

\[\Delta \nu \propto \sqrt{\rho} \]
\[\nu_{\text{max}} \propto g/T_{\text{eff}} \]

Small frequency spacings \(\delta \nu_{01} \)

Adapted from Corsaro et al. 2012b

Adapted from Stello et al. 2013

RGB Oscillations

Gravity modes (g modes)
(Radiative cores)

- As the star evolves p modes ↓ in frequency
- As the star evolves g modes ↑ in frequency
- From subgiant phase of evolution Mixed modes are generated (mostly dipole modes)

Stello, D. (2012; ASPC 462, 200)
Gravity modes (g modes)

(Radiative cores)

- As the star evolves p modes \(\downarrow\) in frequency
- As the star evolves g modes \(\uparrow\) in frequency
- From subgiant phase of evolution Mixed modes are generated (mostly dipole modes)

\[\text{Mixed modes} + \text{p modes} = \text{Oscillations in Red Giants}\]

Period spacing \(\Delta P\)
Sensitive to core structure and composition

Adapted from Stello et al. 2013
Asymptotic parameters

- From ensemble analysis (hundreds of RGs) observed with Kepler we have:
 - Tight correlation between $\delta \nu_{02}, \delta \nu_{01}$ and $\Delta \nu$
 - ε is a function of fundamental stellar parameters (Mass, Radius)

Adapted from Huber et al. 2010
Period Spacings

- ΔP as a way to distinguish between He-core and H-shell burning RGs

Adapted from Bedding et al. 2011

Adapted from Mosser et al. 2012

Really powerful tool for constraining the evolutionary stage of Red Giants
Section 3

Ensemble results from 19 months photometry
Why Cluster RGs?

- Exploiting the common properties of cluster stars
- Ensemble analysis of asymptotic parameters (AARG code)
- Period spacings analysis
- 19 months of continuous photometry observations with Kepler

(1) More stringent results on asymptotic quantities
(2) Deeper comprehension of the physics behind
(3) Possibility for detailed modeling of the stars
• Verified log-relation by Mosser et al. 2011
\[\epsilon = (0.601 \pm 0.025) + (0.632 \pm 0.032) \log \Delta \nu \]

• Very good agreement with the results by Kallinger et al. 2012 (Kepler) and Mosser et al. 2011b (CoRoT) on field RGs

• Power-law relation provides another reliable law
\[\epsilon = (0.681 \pm 0.017) \Delta \nu^{0.261 \pm 0.014} \]

Adapted from Corsaro et al. 2012
Adapted from Corsaro et al. 2012

C-D diagrams for $\delta \nu_{02}$

• Highlights in Open Clusters
• What we expect from Red Giants
• Ensemble results from 19 months photometry
• Conclusions

Padova, 23rd September 2013

C-D diagrams for δv_{01}

Adapted from Corsaro et al. 2012

- Highlights in Open Clusters
- What we expect from Red Giants
- Ensemble results from 19 months photometry
- Conclusions
Evidence for **mass dependence**. We correlate the slope b of the linear fit in the C-D diagram to mass:

$$b_{02} = (0.138 \pm 0.012) + (-0.014 \pm 0.008) \left(\frac{M_{\text{RGB}}}{M_{\odot}} \right)$$

$$b_{01} = (-0.073 \pm 0.012) + (0.044 \pm 0.008) \left(\frac{M_{\text{RGB}}}{M_{\odot}} \right)$$

- Qualitatively agreement with theoretical results by Montalban et al. 2011
Ensemble échelle diagrams

NGC 6791

Mixed dipole modes more pronounced in Clump stars

Broadening of $l = 2$ ridges for RC stars - Mixed quadrupole modes

Adapted from Corsaro et al. 2012

Padova, 23rd September 2013

lunedì 23 settembre 13
Ensemble échelle diagrams

- Highlights in Open Clusters
- What we expect from Red Giants
- Ensemble results from 19 months photometry
- Conclusions

Linewidths are related to damping of the modes

Adapted from Corsaro et al. 2012
Exponential correlation between linewidths and T_{eff} (even for cooler stars) - **One law only from MS to RG stars**

\[
\Gamma = \Gamma_0 \exp \left(\frac{T_{\text{eff}} - 5777 \text{ K}}{T_0} \right) \mu\text{Hz}
\]

$\Gamma_0 = 1.39 \pm 0.10 \mu\text{Hz}$

$T_0 = 601 \pm 3 \text{ K}$

- Temperature estimates for the three clusters from (V - K) color
- Exponential correlation between linewidths and T_{eff} (even for cooler stars)

Adapted from Corsaro et al. 2012

- Highlights in Open Clusters
- What we expect from Red Giants
- Ensemble results from 19 months photometry
- Conclusions
Highlights in Open Clusters

What we expect from Red Giants

Ensemble results from 19 months photometry

Conclusions

Adapted from Corsaro et al. 2012

\[\Delta P_{\text{obs}} - \Delta \nu \]
• 53 RGs, where ΔP_{obs} could be measured

• Some of them are standing outside the expected regions: discussion of **14 special cases**
 (AGB stars, Binaries, Blue Stragglers, Evolved Clump stars)
Conclusions

- Log-relation ε-mean density of the stars confirmed and improved also for cluster RGs and new power law relation tested

- First evidence for mass dependence of small spacings $\delta\nu_{02}$ and $\delta\nu_{01}$ in cluster RGs (in qualitative agreement with predictions)

- Different behaviour of RC stars in C-D diagrams relative to their RGB counterparts (theoretical models for post He-flash phase are required)
Conclusions

- **New exponential law for linewidths** as a function of temperature

- **53 Red Giants** could be classified in their evolutionary stage

- Period spacing analysis revealed **14 stars** to be **at a different stage of evolution** than anticipated from the CMD - **Very interesting for modeling!**

- **6 evolved RC stars** to be modeled theoretically
Funding for this Discovery mission is provided by NASA's Science Mission Directorate. The authors would like to thank the entire Kepler team, without whom this investigation would not have been possible.

We thank all the KASC members contributing to this work:

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 269194

Thank you for your attention!
Evidence for a systematic difference in temperature of the two clusters

Linewidths increase with temperature (in agreement with Huber et al. 2010 and Kallinger et al. 2012)

RC stars have larger linewidths because of higher temperatures

Adapted from Corsaro et al. 2012
Interesting targets list

Outliers ΔP_{obs}

<table>
<thead>
<tr>
<th>KIC ID</th>
<th>NGC</th>
<th>Notes a</th>
<th>ν_{max} (µHz)</th>
<th>$\Delta \nu$ (µHz)</th>
<th>ϵ</th>
<th>$\delta \nu_{02}$ (µHz)</th>
<th>$\delta \nu_{01}$ (µHz)</th>
<th>ΔP_{obs} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5112361</td>
<td>6819</td>
<td>(A) Outlier</td>
<td>67.4 ± 1.4</td>
<td>6.181 ± 0.025</td>
<td>1.066 ± 0.044</td>
<td>0.712 ± 0.066</td>
<td>-0.102 ± 0.048</td>
<td>75</td>
</tr>
<tr>
<td>4937770</td>
<td>6819</td>
<td>(B) Outlier</td>
<td>93.8 ± 2.4</td>
<td>7.821 ± 0.076</td>
<td>1.119 ± 0.117</td>
<td>0.808 ± 0.117</td>
<td>-0.096 ± 0.070</td>
<td>109</td>
</tr>
<tr>
<td>5024414</td>
<td>6819</td>
<td>(C) Outlier</td>
<td>77.1 ± 1.5</td>
<td>6.490 ± 0.056</td>
<td>1.013 ± 0.103</td>
<td>0.720 ± 0.072</td>
<td>-0.220 ± 0.143</td>
<td>178</td>
</tr>
<tr>
<td>5024476</td>
<td>6819</td>
<td>(D) Outlier</td>
<td>67.0 ± 1.7</td>
<td>5.693 ± 0.097</td>
<td>1.138 ± 0.201</td>
<td>0.656 ± 0.152</td>
<td>-0.203 ± 0.234</td>
<td>199</td>
</tr>
</tbody>
</table>

Adapted from Corsaro et al. 2012

Other interesting cases

<table>
<thead>
<tr>
<th>KIC ID</th>
<th>NGC</th>
<th>Notes a</th>
<th>ν_{max} (µHz)</th>
<th>$\Delta \nu$ (µHz)</th>
<th>ϵ</th>
<th>$\delta \nu_{02}$ (µHz)</th>
<th>$\delta \nu_{01}$ (µHz)</th>
<th>ΔP_{obs} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2437103</td>
<td>6791</td>
<td>Misclassified CMD</td>
<td>29.7 ± 1.7</td>
<td>3.791 ± 0.064</td>
<td>0.770 ± 0.132</td>
<td>0.325 ± 0.153</td>
<td>-0.242 ± 0.114</td>
<td>306</td>
</tr>
<tr>
<td>2437589</td>
<td>6791</td>
<td>Misclassified CMD</td>
<td>46.5 ± 1.5</td>
<td>4.603 ± 0.026</td>
<td>1.026 ± 0.057</td>
<td>0.526 ± 0.042</td>
<td>-0.184 ± 0.038</td>
<td>39</td>
</tr>
<tr>
<td>5024404</td>
<td>6819</td>
<td>Misclassified CMD</td>
<td>48.8 ± 0.7</td>
<td>4.857 ± 0.126</td>
<td>0.835 ± 0.261</td>
<td>0.689 ± 0.095</td>
<td>-0.122 ± 0.072</td>
<td>182</td>
</tr>
<tr>
<td>9716522</td>
<td>6811</td>
<td>AGB</td>
<td>54.9 ± 1.0</td>
<td>4.852 ± 0.036</td>
<td>0.973 ± 0.084</td>
<td>0.592 ± 0.102</td>
<td>-0.116 ± 0.099</td>
<td>154</td>
</tr>
<tr>
<td>2436417</td>
<td>6791</td>
<td>Likely evolved RC</td>
<td>26.7 ± 0.8</td>
<td>3.412 ± 0.058</td>
<td>0.874 ± 0.133</td>
<td>0.342 ± 0.090</td>
<td>-0.237 ± 0.074</td>
<td>268</td>
</tr>
<tr>
<td>2437804</td>
<td>6791</td>
<td>Likely evolved RC</td>
<td>26.5 ± 1.6</td>
<td>3.350 ± 0.070</td>
<td>0.870 ± 0.165</td>
<td>0.478 ± 0.054</td>
<td>-0.266 ± 0.529</td>
<td>212</td>
</tr>
<tr>
<td>5024601</td>
<td>6819</td>
<td>Likely evolved RC</td>
<td>31.8 ± 1.7</td>
<td>3.704 ± 0.028</td>
<td>0.862 ± 0.065</td>
<td>0.498 ± 0.061</td>
<td>-0.140 ± 0.107</td>
<td>-</td>
</tr>
<tr>
<td>5112401</td>
<td>6819</td>
<td>Likely evolved RC</td>
<td>38.2 ± 0.7</td>
<td>4.047 ± 0.068</td>
<td>0.892 ± 0.158</td>
<td>0.476 ± 0.082</td>
<td>-0.169 ± 0.069</td>
<td>209</td>
</tr>
<tr>
<td>5112950</td>
<td>6819</td>
<td>Likely evolved RC</td>
<td>42.8 ± 1.3</td>
<td>4.302 ± 0.036</td>
<td>1.082 ± 0.083</td>
<td>0.584 ± 0.104</td>
<td>0.010 ± 0.181</td>
<td>249</td>
</tr>
<tr>
<td>5112974</td>
<td>6819</td>
<td>Likely evolved RC</td>
<td>41.7 ± 0.7</td>
<td>4.358 ± 0.045</td>
<td>0.874 ± 0.099</td>
<td>0.655 ± 0.115</td>
<td>0.064 ± 0.073</td>
<td>239</td>
</tr>
</tbody>
</table>

Adapted from Corsaro et al. 2012
KIC 2436593 RGB star belonging to NGC 6791

\[\nu_{\text{max}} = 111.64 \, \mu\text{Hz} \]

\[\Delta \nu = 9.64 \, \mu\text{Hz} \]

\[\epsilon = 1.238 \]

\[\delta \nu_{02} = 1.178 \, \mu\text{Hz} \]

\[\delta \nu_{01} = 0.078 \, \mu\text{Hz} \]

\[\Delta P_{\text{obs}} = 54.7 \, \text{s} \]

Adapted from Corsaro et al. 2012
Mass loss

- Direct estimates of mass loss rates for NGC 6791 and NGC 6819

- Mass correction to the Δv scaling relation for clump stars

- **NGC 6791** significant mass loss
 \[\Delta M = 0.09 \pm 0.03 \text{ (random)} \pm 0.04 \text{ (systematic)} \, M_\odot \]
 \[M_{\text{RC (corrected)}} = 1.15 \pm 0.03 \, M_\odot \text{ (2.7 \% corr.)} \]

- **NGC 6819** no mass loss
 \[\Delta M = -0.03 \pm 0.04 \, M_\odot \]
 \[M_{\text{RC (corrected)}} = 1.65 \pm 0.04 \, M_\odot \text{ (1.9 \% corr)} \]
Section 4

Discussion of interesting targets
Interesting targets list

Outliers ΔP_{obs}

<table>
<thead>
<tr>
<th>KIC ID</th>
<th>NGC</th>
<th>Notesa</th>
<th>ν_{max} ((\mu\text{Hz}))</th>
<th>$\Delta \nu$ ((\mu\text{Hz}))</th>
<th>ϵ</th>
<th>$\delta \nu_{02}$ ((\mu\text{Hz}))</th>
<th>$\delta \nu_{01}$ ((\mu\text{Hz}))</th>
<th>ΔP_{obs} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5112361</td>
<td>6819</td>
<td>(A) Outlier</td>
<td>67.4 ± 1.4</td>
<td>6.181 ± 0.025</td>
<td>1.066 ± 0.044</td>
<td>0.712 ± 0.066</td>
<td>−0.102 ± 0.048</td>
<td>75</td>
</tr>
<tr>
<td>4937770</td>
<td>6819</td>
<td>(B) Outlier</td>
<td>93.8 ± 2.4</td>
<td>7.821 ± 0.076</td>
<td>1.119 ± 0.117</td>
<td>0.808 ± 0.117</td>
<td>−0.096 ± 0.070</td>
<td>109</td>
</tr>
<tr>
<td>5024414</td>
<td>6819</td>
<td>(C) Outlier</td>
<td>77.1 ± 1.5</td>
<td>6.490 ± 0.056</td>
<td>1.013 ± 0.103</td>
<td>0.720 ± 0.072</td>
<td>−0.220 ± 0.143</td>
<td>178</td>
</tr>
<tr>
<td>5024476</td>
<td>6819</td>
<td>(D) Outlier</td>
<td>67.0 ± 1.7</td>
<td>5.693 ± 0.097</td>
<td>1.138 ± 0.201</td>
<td>0.656 ± 0.152</td>
<td>−0.203 ± 0.234</td>
<td>199</td>
</tr>
</tbody>
</table>

Adapted from Corsaro et al. 2012

Other interesting cases

<table>
<thead>
<tr>
<th>KIC ID</th>
<th>NGC</th>
<th>Notesa</th>
<th>ν_{max} ((\mu\text{Hz}))</th>
<th>$\Delta \nu$ ((\mu\text{Hz}))</th>
<th>ϵ</th>
<th>$\delta \nu_{02}$ ((\mu\text{Hz}))</th>
<th>$\delta \nu_{01}$ ((\mu\text{Hz}))</th>
<th>ΔP_{obs} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2437103</td>
<td>6791</td>
<td>Misclassified CMD</td>
<td>29.7 ± 1.7</td>
<td>3.791 ± 0.064</td>
<td>0.770 ± 0.132</td>
<td>0.325 ± 0.153</td>
<td>−0.242 ± 0.114</td>
<td>306</td>
</tr>
<tr>
<td>2437589</td>
<td>6791</td>
<td>Misclassified CMD</td>
<td>46.5 ± 1.5</td>
<td>4.603 ± 0.026</td>
<td>1.026 ± 0.057</td>
<td>0.526 ± 0.042</td>
<td>−0.184 ± 0.038</td>
<td>39</td>
</tr>
<tr>
<td>5024404</td>
<td>6819</td>
<td>Misclassified CMD</td>
<td>48.8 ± 0.7</td>
<td>4.857 ± 0.126</td>
<td>0.835 ± 0.261</td>
<td>0.689 ± 0.095</td>
<td>−0.122 ± 0.072</td>
<td>182</td>
</tr>
<tr>
<td>9716522</td>
<td>6811</td>
<td>AGB</td>
<td>54.9 ± 1.0</td>
<td>4.852 ± 0.036</td>
<td>0.973 ± 0.084</td>
<td>0.592 ± 0.102</td>
<td>−0.116 ± 0.099</td>
<td>154</td>
</tr>
<tr>
<td>2436417</td>
<td>6791</td>
<td>Likely evolved RC</td>
<td>26.7 ± 0.8</td>
<td>3.412 ± 0.058</td>
<td>0.874 ± 0.133</td>
<td>0.342 ± 0.090</td>
<td>−0.237 ± 0.074</td>
<td>268</td>
</tr>
<tr>
<td>2437804</td>
<td>6791</td>
<td>Likely evolved RC</td>
<td>26.5 ± 1.6</td>
<td>3.350 ± 0.070</td>
<td>0.870 ± 0.165</td>
<td>0.478 ± 0.054</td>
<td>−0.266 ± 0.529</td>
<td>212</td>
</tr>
<tr>
<td>5024601</td>
<td>6819</td>
<td>Likely evolved RC</td>
<td>31.8 ± 1.7</td>
<td>3.704 ± 0.028</td>
<td>0.862 ± 0.065</td>
<td>0.498 ± 0.061</td>
<td>−0.140 ± 0.107</td>
<td></td>
</tr>
<tr>
<td>5112401</td>
<td>6819</td>
<td>Likely evolved RC</td>
<td>38.2 ± 0.7</td>
<td>4.047 ± 0.068</td>
<td>0.892 ± 0.158</td>
<td>0.476 ± 0.082</td>
<td>−0.169 ± 0.069</td>
<td>209</td>
</tr>
<tr>
<td>5112950</td>
<td>6819</td>
<td>Likely evolved RC</td>
<td>42.8 ± 1.3</td>
<td>4.302 ± 0.036</td>
<td>1.082 ± 0.083</td>
<td>0.584 ± 0.104</td>
<td>0.010 ± 0.181</td>
<td>249</td>
</tr>
<tr>
<td>5112974</td>
<td>6819</td>
<td>Likely evolved RC</td>
<td>41.7 ± 0.7</td>
<td>4.358 ± 0.045</td>
<td>0.874 ± 0.099</td>
<td>0.655 ± 0.115</td>
<td>0.064 ± 0.073</td>
<td>239</td>
</tr>
</tbody>
</table>

Adapted from Corsaro et al. 2012
Outliers ΔP_{obs}

- **A, B, C, D** unexpected position in the $\Delta P_{\text{obs}}-\Delta \nu$ diagram
- **A, B** are likely to be binary stars, with one component RGB and another faint less-evolved component (suggested by their lower B-V color)

Adapted from Corsaro et al. 2012

Highlights in Open Clusters

- What we expect from Red Giants
- Ensemble results from 19 months photometry
- Discussion of interesting targets

Padova, 23rd September 2013

Adapted from Corsaro et al. 2012

Outliers ΔP_{obs}

- A, B, C, D unexpected position in the ΔP_{obs}-$\Delta \nu$ diagram
- C, D have a high mass estimate and are likely to be evolved blue straggler stars (BSS) as suggested by Rosvick, J. M., & Vandenberg, D. A. 1998, AJ, 115, 1516

Adapted from Corsaro et al. 2012

Padova, 23rd September 2013

lunedì 23 settembre 13
Other interesting cases

- **KIC 2437589** misclassified from CMD
 Higher mass than other RGB (1.7 M$_\odot$)
 Suggestion by Brogaard et al. 2012 for BSS in the RGB phase
Other interesting cases

- **KIC 2437589** misclassified from CMD
 Higher mass than other RGB (1.7 M$_\odot$)
 Suggestion by Brogaard et al. 2012 for BSS in the RGB phase

- **KIC 2437103** ($\Delta P_{\text{obs}} = 306$ s) and **KIC 5024404** ($\Delta P_{\text{obs}} = 182$ s) misclassified from CMD. Both RC stars
Other interesting cases

- **KIC 2437589** misclassified from CMD
 Higher mass than other RGB (1.7 M_\odot)
 Suggestion by Brogaard et al. 2012 for BSS in the RGB phase

- **KIC 2437103** ($\Delta P_{\text{obs}} = 306$ s) and **KIC 5024404** ($\Delta P_{\text{obs}} = 182$ s) misclassified from CMD. Both RC stars

- **6 likely evolved RC stars** - Show masses of RC stars but lower $\Delta \nu$. Hence larger radii
Other interesting cases

- **KIC 2437589** misclassified from CMD
 Higher mass than other RGB ($1.7 \, M_\odot$)
 Suggestion by Brogaard et al. 2012 for **BSS** in the RGB phase

- **KIC 2437103** ($\Delta P_{\text{obs}} = 306 \, \text{s}$) and
 KIC 5024404 ($\Delta P_{\text{obs}} = 182 \, \text{s}$) misclassified from CMD. Both **RC** stars

- **6 likely evolved RC stars** - Show masses of RC stars but lower $\Delta \nu$. Hence larger radii

- **KIC 9716522** ($\Delta P_{\text{obs}} = 154 \, \text{s}$) is an AGB
 as suggested by Stello et al. 2011b from CMD

Padova, 23rd September 2013

lunedì 23 settembre 13
Linewidths and T_{eff}

- Linewidths of 800 RGs appear to increase with increasing Δv

- Linewidths correlate well with T_{eff}, both from Kepler and CoRoT

- Linewidths increase with the logarithm of Δv

- No evident correlation of linewidths with T_{eff} for RGs observed with CoRoT (5 months)