

Dynamical Analysis of Nearby ClustErs

Hervé BOUY

and the DANCe Team:

E. Bertin, J.-C. Cuillandre, E. Moraux, L. M. Sarro, J. Bouvier, W. Brandner, Y. Beletsky, D. Barrado, N. Wright, E.

Solano

The World of Clusters - Padova - Sept. 2013

NEED TO COMPLEMENT GAIA

GAIA complete up to G~20mag ~15 M_{Jup} at 3Myr and 150 pc

Reason #I: Sensitivity

Mass Function goes down to $3 \sim 4 M_{Jup}$

(cf. E. Moraux Talk yesterday)

NEED TO COMPLEMENT GAIA Reason #2: Extinction & Nebulosity

Scientific Goals: Young Clusters & Associations

I.Detailed census (mass & luminosity functions) beyond Gaia's limit

2.Study of internal dynamics as a function of mass, age, environment. Compare with numerical simulations (cf E. Moraux Talk)

Method

Using multi-wavelength photometry and high precision astrometry:

- I. Find members down to the substellar and planetary mass regimes
- 2. In the embedded cores of young nearby associations

FIRST DANCE FLOOR: THE PLEIADES

5 telescopes

9 instruments 15 yr time baseline ~16500 images 1.ITB of data 100×10⁶ detections

I TB of RAM

RESULTS

In the ICRS!

RESULTS

In the ICRS!

I) Select in VPD

 $\begin{array}{c} 20 \\ 0 \\ 0 \\ -20 \\ -40 \\ -60 \\ -20 \\ 0 \\ 20 \\ 0 \\ -60 \\ -20 \\ 0 \\ -60 \\ -20 \\ 0 \\ -60 \\ -20 \\ 0 \\ -60 \\ -20 \\ 0 \\ -60 \\ -20 \\ 0 \\ -60 \\ -20 \\ 0 \\ -60 \\ -20 \\ 0 \\ -60 \\ -20 \\ -20 \\ -60 \\ -20$

2) Clean in successive Color-Mag diagrams

I) Select in VPD

I) Select in VPD

2) Clean in successive Color-Mag diagrams

1921 astrometric candidates...

only 823 have both i and J

I) Select in VPD

2) Clean in successive Color-Mag diagrams

Problems:

- Censored data?
- Theoretical isochrones: unreliable at young ages!
- Uncertainties on the measurements?
- How to derive robust **quantitative** membership probabilities?

- ✓ Best combination of color-magnitude diagram is found using Bayesian Information Criterion
- ✓ full treatment of **censored** data
- ✓ full treatment of **uncertainties**
- ✓ coherent and homogeneous membership probabilities
- ✓ fully empirical sequences (using Principal Curves, not theoretical tracks)
- ✓ scalable: add more dimensions! variability, Vrad, rotation, spatial distribution, ...

RESULTS

PERSPECTIVES

FAST ASSOCIATIONS					
Name	Age [Myr]	Distance [pc]	µRA [mas/yr]	µDec [mas/yr]	
Pleiades	120	120	-35	-15	
CrA		130	-35	51	
η Cha	9	100	-30	28	
Cha I, II & III	3	140	-20	-5	
Upper Sco	5	125	-9	-24	
α Per	50	180	24	-26	
IC2391	55	155	-25	23	
IC2602	50	145	-22	10	
Lupus	3	140	-17	-27	
Praesepe	650	180	-36	-13	
Ophiuchus	I	145	-10	-25	
Taurus	3	140	-8	-25	
Blanco I	100	210	19	4	
Hyades	625	40	90	-20	
γ Velorum	5	350	-6	10	
NGC2451	10	300	-10	4	

"EAST" ACCOCLAT

"SLOW" Associations					
Name	Age [Myr]	Distance [pc]			
Cygnus OB2		2000			
IC348	3	350			
NGC1333	I	350			
Serpens	3	450			
ONC	I	400			
NGC1980	10(?)	400(?)			
NGC2264	5	670			
IC4665	40	350			
λ -Ori	5	400			
σ -Ori	5	350			

PROBLEMS AND LIMITATIONS

Very inhomogeneous datasets:

- very different sensitivities
- different resolution (seeing)
- different ambient conditions (hence astrometric accuracy)...

making it sometimes difficult to interpret the results

But Gaia will have similar problems...

So far limited to proper motion:

- need parallax for 6D

but DANCe is very rich nevertheless!

We are interested in cluster and associations but much more science can be extracted from our catalogues!

"DANCe is like a Poor Man's LSST" E. Bertin

- galactic populations,
- asteroids,
- white dwarfs,
- nearby brown dwarfs

but DANCe is very rich nevertheless!

We are interested in cluster and associations but much more science can be extracted from our catalogues!

~3 mag deeper than Gaia, and up to K-band !

"DANCe is like a Poor Man's LSST" E. Bertin

- galactic populations,
- asteroids,
- white dwarfs,
- nearby brown dwarfs

Wanna DANCe with us?

Hervé BOUY

and the DANCe Team: E. Bertin, J.-C. Cuillandre, E. Moraux, L. M. Sarro, J. Bouvier, W. Brandner, Y. Beletsky, D. Barrado, N. Wright, E. Solano