Massive-star clusters in the Gaia-ESO Survey

Ronny Blomme Royal Observatory of Belgium

On behalf of: Y. Frémat, M. Gebran, A. Lobel, J. Maíz Apellániz, R. Monier, T. Morel, I. Negueruela, F. Royer, T. Semaan, S. Simón-Díaz and the Gaia-ESO WG13 team

Gaia-ESO Survey (GES)

GES

- The Gaia-ESO Survey (GES) is a public, spectroscopic survey.
- The group of more the 300 Co-Investigators is led by Co-PIs Gerry Gilmore and Sofia Randich.
- GES uses the VLT-Flames instrument on UT2 for the observations, with both the Giraffe and UVES fibres.
- 300 nights of observation are foreseen, spread over 5 years.
- The survey started observations on the last day of 2011.
- GES studies the formation and evolution of the Milky Way and its stellar populations: substructure of the halo, nature of the bulge, formation of thick and thin disks, dynamical and stellar evolution of open clusters
- Some 60 old clusters (> 100 Myr) will be observed, and 40 young clusters, which includes 13 with massive-star content.

GES

Gaia-ESO Survey (GES)

- With the massive star data from the GES, we hope to
 - Test stellar evolution modelling
 - Test rotational mixing
 - Upper part of the Initial Mass Function
 - Be stars
 - Stellar wind clumping
 - Galactic abundance gradients

The clusters studied so far are:

	Cluster	Age	Distance (kpc)	Galactocentric distance (kpc)
	Berkeley 81	1 Gyr	3	5.8
	NGC 4815	0.5 Gyr	2.5	6.9
	NGC 6705	250-300 Myr	1.9	6.1
	NGC 3293	10 Myr	2.3	7.7
	Trumpler 14	1-3 Myr	2.3	7.6
Pad	ova, 23-26 September 2013	World	of Clusters	

Stellar parameters

Stellar parameters – all stars

- A first determination is made for all the stars observed with the "hot-star" gratings.
- Other groups then apply more sophisticated models and synthetic spectra to part of the data.
- For the first determination, we use the Bertone et al. (2004) grid.
- We determine effective temperature (Teff), gravity (log g), metallicity ([Fe/H]), rotational velocity (v sin i), and radial velocity (RV).

Filter	Wavelengths
HR03	4033-4201
HR05B	4340-4587
HR06	4538-4759
HR09B	5143-5356
HR14A	6308-6701
UVES 520	4140-6210
UVES 580	4760-6840

Stellar parameters

T_{eff}, log g diagram

- Older clusters have lost the hottest stars.
- Also for young clusters we have a number of nonmembers. This is a consequence of the observing strategy.
- The synthetic spectrum grid used covers a wide range of temperatures, and is therefore not the most sophisticated one for the massive stars.
- There are still problems with the interpolation of the spectra between the grid points.

A-type stars

A-type stars

The majority of stars in NGC 3293 are pre-MS stars contracting onto the ZAMS over 1 to 20 Myr (pre-MS isochrones are shown with dash-dotted lines).

The bottom dash-dotted line marks the ZAMS, while the solid lines show pre-MS evolutionary tracks for 1.7 to 3.6 M_{\odot} .

A. Lobel

A-type stars

A-type stars

NGC 6705: post-ZAMS (cluster age 250-300 Myr)

A-type stars

A-type stars

NGC 3293: microturbulence

- Microturbulent velocity as a function of effective temperature for the A and F stars.
- Open magenta symbols are members of the young open cluster NGC 3293.
- The size of the symbols is inversely proportional to log g ranging between 1.0 and 5.0 dex.
- The maximum in microturbulent velocity is observed around 8000 - 9000 K.

Gebran et al. 2013

B-type stars

B-type stars – Tr 14

Four examples of rotational velocity determination in late-O and early B-type.

It uses a combined Fourier transform (FT) + goodness of fit (GOF) technique.

S. Simón-Díaz

O-type stars

O-type stars – Tr 14

- IACOB-GBAT analysis of the O9.5V star in Carina CPD-59 2627.
- IACOB-GBAT is a fast gridbased automatized tool to perform quantitative spectroscopic analysis of large samples of O-type stars in a reasonable amount of time.
- Based on a vast grid of FASTWIND models and a chi2 fitting technique.

S. Simón-Díaz

B-type stars

B-type stars - NGC 3293

Comparison with Hunter et al. (2009)

Binarity in NGC 3293 and Br 81

Binarity in NGC 3293 and Br 81

Histogram of radial velocities (RVs)

Cluster membership NGC 3293

- We split up the radial velocity histogram in three regions, and map them back on to their sky coordinates.
- The most frequent radial velocities map back to a large range in distances from the cluster centre.
- This suggests that NGC 3293 is larger than assumed so far.

Summary

Summary:

- Stellar parameter determination 5 GES clusters
 Br 81, NGC 4815, NGC 6705, NGC 3293 and Tr 14
- A-type stars
 - NGC 3293 are pre-MS
 - NGC 6705 post-ZAMS
- Microturbulence A-type stars peaks at ~8000 K
- B-type stars: rotational velocity determination; good agreement with previous determinations stellar parameters
- O-type stars: analysis started
- Radial velocities: binary fraction + membership