AIDA – Astronomical Image Decomposition & Analysis

A software tool for 2D QSO images analysis

M. Uslenghi (1) & R. Falomo (2)

(1) INAF IASF-Milano
(2) INAF Osservatorio Astronomico di Padova
Detection of Quasar hosts

- To detect & characterize high z quasars hosts is required:
 - High spatial resolution (narrow PSF)
 - Good sensitivity
 ⇒ HST, AO
 But ... complex PSF shape, variable in the FOV

- Detection of the faint extended emission surrounding a bright point source requires careful characterization of the PSF → simultaneous decomposition into nuclear & host components by model fitting:
 \[(\text{galaxy+nucleus}) \otimes \text{PSF}\]

- Correct decoupling of the shape of the host galaxy and shape of the PSF requires 2d modeling (see e.g. Taylor, Dunlop et al. 1996, Kuhlbrodt et al. 2004, Peng et al. 2002)
Why a new software?

- Various “personal” SW (usually not available &/or not documented)

- **GALFIT** usable for galaxy dominated objects; poor results for nucleus dominated objects (QSO, ..)

- No interactive SW available to support analysis of “complex” cases
AIDA: Software Overview

- Developed in IDL 6.0, based on Widgets GUIs (but /NOWIDGET mode is available)

- Tested under Windows XP / Linux SuSE 9.2 / Linux Red Hat

- Simultaneous decomposition into nuclear & host components
 - Step 1: Sources selection/image preparation
 - Step 2: PSF model extraction
 - Step 3: Target model fitting
 - Step 4: Output
Step 1: - Sources selection/image preparation

Image visualization and preliminary source selection based on a modified version of ATV

(Barth, A. J. 2001, in ASP Conf. Ser. 238,385)

- Select stars to be included in the PSF analysis
- For each selected source:
 - Mask the image
 - Choose fit radii
 - Compute local background
 - Choose fit weighting model
Step 2: PSF model extraction

- PSF model: analytical (any combination of provided 2d-functions) and/or empirical (e.g. TinyTim)

- 2d functions:
 - Gauss
 - Moffat
 - Exponential

- Possibility to define 2 different regions with different PSF models (e.g.: LUT in the core and mixed in the wings → HST)
Step 2: PSF model extraction

- **Multiple stars fitting:**
 - simultaneous fitting with the same model parameters
 - individual stars fitting (to model PSF changes in the FOV) → using analytical models with a limited number of parameters, dependence of the PSF parameters on the position can be modeled
Model fitting: initial guesses

- Initial guess values for the fit parameters can be provided by filling the related form; constraints can also be set on each parameter...

- ...the software can provide the initial guess & constraints automatically, basing on 1-d fitting of the best star profile, so that the intervention of the user is hardly ever required ...
PSF Model Fitting

2D fit use a modified version of the CURFIT algorithm *(Bevington)*

Text log file of the fit results

2d-Fit results visualization
Step 3: Target Analysis

- Simple PSF subtraction
 or
- Model fitting with PSF convolution
Step 3: Target Analysis

- Convolved model: \((\text{galaxy+nucleus}) \otimes \text{PSF}\)

- Galaxy models:
 - De Vaucouleurs
 - Disc Law
 - Generalized Disc Law
 - No galaxy
 - ... (other functions can be added by the user)

- To minimize the dependency on the initial guesses, a procedure can compute the fit with different initial guesses, randomly extracted in a suitable range.
Error Evaluation

- An estimate of the errors associated with the computed parameters values can be obtained by simulating the process with synthetic quasars.

- A simulation tool (to build & analyze synthetic images) has been implemented:
 - synthetic quasars images are generated adding noise to the best fit model - then, the fit procedure is applied to the images, producing a "best fit" combination of parameters values for each image.
 - for each parameter, the standard deviation of the best-fit values gives an estimate of the uncertainty on the parameters introduced by the noise.
Output Products

- Output files can be generated in several formats, e.g:
 - Text files
 - Session IDL file
 - PS graphic report including relevant plots & results of the analysis
Examples with astronomical data

We used AIDA to analyze several astronomical data sets:

- **VLT/ISAAC**: $1.221 \leq z \leq 1.895$ 15 objects (13 resolved, 1 marginally resolved) *Kotilainen et al., in preparation*
- **NOT/NOTCam** (NIR): $0.515 \leq z \leq 0.994$ 15 objects (12 resolved) *Hyvönen et al., submitted to A&A*
- **HST/WFPC2**: 5 objects (2 resolved) *Labita et al., submitted to MNRAS*
- **VLT/NACO**: $2.030 \leq z \leq 2.928$ 3 objects *Falomo et al., in preparation*
VLT/ISAAC

- Fully analytical PSF (~5 gaussians + 3 exponentials)
- PSF invariant in the FOV -> all the stars in the FOV are fitted with the same model
1.221 \leq z \leq 1.895

Kotilainen et al., in preparation
HST PSF

TinyTim PSF

Mixed PSF model: empirical in the inner part (-> TinyTim generated); empirical+analytical (3 exp. Components) in the wings

Montagnana, 23-26/5/2006

AGN7
HST WFPC2 images

5 objects, 2 resolved

M. Labita et al., submitted to MNRAS
AO: VLT/NACO (detecting host galaxies at z~3)

Analytical PSF, but strongly variable in the FOV
VLT/NACO

WGA J0633.1-2333 (z=2.928)

$M_k=-27.1$

$R_e=6.5$ kpc

($H=70$, $\Omega_m=0.3$, $\Omega_\Lambda=0.7$)

Falomo et al., in preparation
Conclusions

- We developed AIDA, a user friendly software for 2D analysis of QSO images (possible applications in other fields...):
 - can manage complex PSF models, including characterization of spatial variability
 - can work in “interactive” mode & in batch mode
 - tested with simulated images and then successfully used to analyze real data from different instruments, including AO with strong dependence of the PSF on the position