Morphology of AGN host galaxies with VST-KIDS: a pilot analysis with the SDSS

Mario Radovich¹, Anna Romano²,³

¹INAF-Osservatorio Astronomico di Capodimonte, ²INAF-VST Center
³Dipartimento di Astronomia - Università di Padova

Introduction

The Kilo-Degree Survey (KIDS) is one of the core public surveys to be done with VST/OmegaCAM: it will provide the up-to-follow-up of the NGP (10° < α < 15°, -7.5° < δ < 2.5°) and SGP (22° < α < 4°, -37° < δ < -22°) in the 2dFGRS. The total covered area will be 1650 sq. deg. (NGP: 793 sq. deg., SGP: 720 sq. deg.). In addition, Y-JHK photometry will be obtained from the ongoing UKIDSS survey (YJK) and from VISTA (NIR: SCUBA) with VIKING, a near-infrared public survey (submitted to ESO) parallel to KIDS. Among the several scientific topics which will be addressed by KIDS (e.g. weak lensing, search for high-z QSOs, environment and morphology of galaxies), we describe here a project aimed at studying the morphology and environment of galaxies hosting an AGN. On large scales (r > 1 Mpc) there is no evidence for a difference in the environment of AGN compared to normal galaxies (see e.g. Sommerting et al. 2005), however, it is still an open issue if there is an excess in AGN of galaxies with close neighbours or showing traces of past merging events (tantal balls, disturbed morphology, etc.) which could have triggered the activity. In preparation of KIDS, we started a pilot analysis using the SDSS data available for the NGP strip to prepare and test the tools which will be then applied to the KIDS data. In particular, SDSS data allow (a) a spectroscopic selection of the sample complementary to the 2dF and (ii) a first morphological analysis, even if the quality of the SDSS images is - a factor 2 lower than that expected for KIDS.

Definition of the sample

The SDSS contains ~36000 galaxies with spectra (z < 0.2) in the NGP strip. Galaxies with no emission lines were classified as passive galaxies. The residual galaxies were classified as: AGN-1 if FWHM(Hα) > 2000 km/s; AGN-2 or star-forming galaxies (SFG) according to the Veilleux-Osterbrock (VO) diagrams (Veilleux & Osterbrock 1987), as parametrized by Kennicutt (2000). In a first approximation, this can be done using line fluxes from the SDSS data-base. However, as the fiber aperture diameters are 2' in the 2dFGRS and 3' in the SDSS, the intensity of Balmer lines is underestimated if no template subtraction is done to remove the absorption from the underlying galaxy. To this end, we used a spectro-photometric code (Fritz & Poggianti 2000) which allows to find for each spectrum a linear combination of simple stellar populations filling the observed continuum and absorption-line features (see Fig. 1). After the subtraction of the template, emission lines were fitted again using multiple Gaussians, not only a code that was developed by us. Figure 2 shows the so-obtained VO plots: it can be seen how in several cases the classification changes from AGN-2 to SFG after template subtraction. Figure 3 shows the spatial distribution of SFG (~5000), AGN-1 (~250) and AGN-2 (~450).

Fig. 2: Diagnostic diagrams for AGN-1, AGN-2 and SFG points are galaxies classified as AGN-2 before template subtraction. The curves (+/-0.1 dex) are from Kennicutt (2000).

Morphological analysis

The morphological analysis is done using two different approaches:

1) Evaluating the Sersic index by model fitting of the galaxy: to this end we use the GALFIT code (Peng et al. 2002). As discussed e.g. by Caesarla et al. (2005), this code does not allow a reliable, morphological classification.

2) Computing the CAS indexes (concentration, asymmetry and clumpiness) defined by Conselice (2003):

\[C = \frac{\log f_s}{r_s} \]

\[A = \sum \frac{|I_i - I_m|}{2\Delta I_i} \]

\[S = \sum (\frac{I_i}{\sum I}) \]

where r_s and f_s are the apertures containing 80% and 20% of the total flux F_m is the image rotated by 180° around a center computed so that minimizes A, Ii is the image smoothed to remove large-scale structures.

We are trying to perform these steps in a way as much as automatic as possible. For each image containing the target galaxy, Sextractor is run; a star-galaxy separation is done from the flux-radius diagram, and the PSF is obtained from a bright star close to the galaxy. Sextractor parameters for the galaxy are used as initial parameters in GALFIT, this allowing a faster and more robust fit. If close neighbours are found, they are included in the fit. At the same time, a smaller image section is extracted around the galaxy and CAS parameters are computed using a tool developed by us in C++, which is currently being tested.

Very preliminary results are displayed in Fig. 4: the displayed Sersic indexes are those given in the NYU catalogs and will be compared with those computed from GALFIT when our analysis will be completed.

Fig. 3: Spatial distribution of AGN-1, AGN-2 and star-forming galaxies (colors as in Fig. 2) from the SDSS catalog, in the NGP strip.

Near-infrared morphology

As the UKIDSS (and later VISTA) data will become progressively available, we’ll extend the morphological analysis from the optical to the near-infrared data.

References

Sommerting G., Radovich M., Riffait A. 2000, accepted by A&A

Fig. 4: Distribution of Sersic indexes (from the NYU catalogs) and CAS parameters (AGN-2 only, preliminary results), in the r band.

KIDS: KiloDegree Survey with VST/OmegaCam

PI: Konrad Kuijken, Leiden Observatory, the Netherlands

VIKING: VISTA KiloDegree Infrared Galaxy Survey

PI: W. den Brok, Institute of Astronomy, Cambridge, UK