AGN Sample in the VIMOS-VLT Deep Survey

Angela Bongiorno
(Dipartimento di Astronomia -Bologna - Italy)

QSO-WG

I. Gavignaud (Astrophysikalisches Institut Postdam-Germany)
G. Mathez (Observatoire Midi-Pyrenees - Toulouse - France)
B. Marano (Dipartimento di Astronomia -Bologna - Italy)
J.P. Picat (Observatoire Midi-Pyrenees - Toulouse - France)
G. Zamorani (INAF-Osservatorio Astronomico -Bologna-Italy)

+VVDS-team

- Gavignaud I, Bongiorno A., Paltani S., Mathez G, Zamorani G. et al., A&A accepted
- Bongiorno A., Zamorani G., Gavignaud I., Marano B., Paltani S. et al., to be submitted
The VIMOS VLT Deep Survey: 1st epoch data

DEEP Sample:
- $17.5 < I_{AB} < 24.0$
- 2 fields

- 0226-04
 - ~0.7 deg2
 - 9600 spectra

- CDFS
 - ~0.15 deg2
 - 1700 spectra

WIDE Sample:
- $17.5 < I_{AB} < 22.5$
- 4 fields
- each 2x2 deg2

- 1003+01
 - ~0.33 deg2
 - 2100 spectra

- 2217-00
 - ~0.8 deg2
 - 5700 spectra

Today, coverage of 02h & 22h fields
The VVDS type -1 AGN Sample: Selection

- Pure magnitude limited sample I_{AB} band
- Free of morphological or colour selection biases

130 BLAGN

Optically selected ONLY on the basis of their SPECTRA:
 - At least ONE broad line

Wide sub-sample \rightarrow 56 AGN
($I_{AB} \leq 22.5$)

Deep sub-sample \rightarrow 74 AGN
($I_{AB} \leq 24.0$)

\sim 700 AGN
Expected at the end of the survey
Redshift degeneracy

Spectroscopic follow-up (3500-6500Å)
Observation Nov 2005 FORS1 VLT
Incompleteness function

1. Treatment of non-targeted BLAGN:

\[W^{TSR} = \frac{1}{TSR} \]

TSR (target sampling rate): fraction of objects in the photometric catalog inside our targeted area which have been spectroscopically observed

2. Treatment of misclassified BLAGN:

\[W^{SSR} = \frac{1}{SSR} \]

SSR (spectroscopic success rate): probability of a spectroscopically targeted AGN to be securely identified. \(F(z,m,SED) \)
Counts

\[
N(\leq I_{AB}) = \frac{1}{A} \sum_{i,I_{AB},i \leq I_{AB}} W_i^{TSR} W_i^{SSR}
\]
Standard pre-selection methods

Morphological analysis:
\[I_{\text{AB}} < 22.5 \]
\[3.5\sigma \]
\[\begin{align*}
77\% & \text{ point-like} \\
23\% & \text{ extended}
\end{align*} \]

Stars (f>2) 18.5<I_{\text{AB}}<22.5 \rightarrow 95\% \text{ point-like}

16/19 extended \rightarrow z<1.6
42\% \ z<1.6 \rightarrow \text{ extended}

Color analysis:
\[z<2.3 \]
\[24\% \text{ excluded} \]
\[I<22.5 \quad 27\% \text{ excluded} \]

Morphology+color selection
applied to our sample (faint) \rightarrow z<2.3
35\% \text{ excluded}
The contamination of the host galaxy is reddening the colors of faint AGN.
BLAGN are intrinsically redder when they are faint.
The reddest colors are due to presence of dust.
The contamination of the host galaxy is reddening the colors of faint AGN

BLAGN are intrinsically redder when they are faint

The reddest colors are due to presence of dust
Luminosity function

Coherent sample (Avni e Bachall 1980)

\[\Omega_{\text{tot}} = \Omega_{\text{deep}} + \Omega_{\text{wide}} \text{ for } I_{AB} \leq 22.5 \]

\[\Omega_{\text{tot}} = \Omega_{\text{deep}} \text{ for } I_{AB} \leq 24.0 \]

Absolute magnitude

\[M = m_{\text{obs}} - 5 \log_{10}(dl(z)) - 25 - K \]

\(m_{\text{obs}} \), for each object, is chosen in the band which is sampling the rest-wavelength closer to the band in which we compute the LF

Luminosity function:

\[\frac{1}{V_{\text{max}}} \text{ estimator} \quad (Schmidt, 1968) \]

\[\phi(M) = \frac{1}{\Delta M} \sum_{M - \Delta M / 2}^{M + \Delta M / 2} \frac{w_i^{\text{TSR}}}{V_{\text{max},i}} \frac{w_i^{\text{SSR}}}{V_{\text{max},i}} \]
Low redshift luminosity function

Double Power Law

$$\phi(M,z) = \frac{\phi(M^*)}{10^{0.4(\alpha+1)(M-M^*)}} + 10^{0.4(\beta+1)(M-M^*)}$$

Pure Luminosity evolution

$$M^*(z) = M^*(0) - 2.5(k_1z + k_2z^2)$$
High redshift luminosity function

- VVDS 2.0 < z < 3.6
- Hunt et al. z = 3
- COMBO-17 2.4 < z < 3.6
- Warren et al. 2.2 < z < 3.5
- SDSS 3.6 < z < 3.9

\[\Phi(M_{1450}) \propto (\text{erg s}^{-1} \text{Mpc}^{-3} \text{mag}^{-1}) \]

\[R_p = 54 \text{ km s}^{-1} \text{ Mpc}^{-1} \]

\[R_p = 1.0 \pm 0.2 \]

\[N = 32 \]

\[N = 42 \]

Absrute Magnitude \(M_{1450} \)
Comparison with results from X-ray surveys

Black dots: our data
Open circles: 2dF data
Red squares: X data
(Barger et al. 2005)
Luminosity function fit: maximum likelihood

\[\phi(M, z) = \frac{\phi(M^*)}{10^{0.4(\alpha+1)(M-M^*)} + 10^{0.4(\beta+1)(M-M^*)}} \]

\[M^*(z) = M^*(0) - 2.5(k_1z + k_2z^2) \]

\[\phi^*(z) = \phi^*(0) \cdot 10^{(k_3z + k_4z^2)} \]

FAINT END SLOPE

2dF-Croom (2004) \(\beta = -1.58 \)
(2dF-Boyle 2001) \(\beta = -1.09 \)
VVDS-PLE \(\beta = -1.30 \)
VVDS-PLE+PDE \(\beta = -1.24 \)
2SLAQ-Richards(2005) \(\beta = -1.45 \)
Summary

✓ VVDS-AGN Sample: 130 type-1 AGN (~700 at the end of the survey)
✓ Free of morphological or colour selection biases
✓ Surface Density $I_{AB}<24$ N=470±65 BLAGN deg$^{-2}$
✓ Applying a morphological and colour analysis to our AGN sample:
 • 23% $I<22.5$ extended
 • 35% $I<22.5$ $z<2.3$ missed

✓ Composite spectrum: continuum shape much redder at $\lambda>3000$ Å
✓ Host galaxy contamination as expected from the faint absolute magnitudes sampled by our survey
✓ Low redshift LF: consistent with a PLE model, but with an excess in the faint part of the first redshift bin
✓ High redshift LF: good agreement with previous data
✓ X-ray LF comparison: good agreement
✓ Data fit: PLE (+PDE)