

The Extreme Adaptive Optics test bench at CRAL based on Mach-Zehnder interferometer

Magali Loupias, Maud Langlois, E. Thiébaut, M. Tallon

Loupias Magali - WFS workshop - Padova - October 2017

XAO challenges

- Strehl: 0.7<SR<0.9 [950nm-1750-nm]
 - Large number actuators: $210 \times 210 = 3 \times 10^4$
- Reduce halo intensity 10⁻⁵ 5×10⁻⁷ [20mas-700mas]
 - Minimize residual phase errors at small spatial scales
 - Fast correction in close loop> 1 kHz
 - Minimize noise propagation (WFS and optimal control)
 - Control chromaticity
- Minimize quasi static aberrations : < 10-15nm (in AO band)
 - Minimize/stabilize aberrations to reduce speckles effect
 - Control these aberrations with offsets the XAO loop
 - Reduce chromaticity (Optical design)

Error source	Nominal values	
Seg. Piston and tip-tilt	36-nm rms	
Seg. Mis-figure	72-nm rms	
EELT 5 mirrors HF	sqrt(5) *20 nm rms	
XAO static in band	10-nm rms	
Reflectivity dispersion	1% rms	

Loupias Magali - WFS workshop - Padova - October 2017

Wavefront sensors / ELT

- Sensitivity
 - SHACK-HARTMANN / Slope measurement with important noise propagation for low and medium spatial scales
 - Optimum phase measurement methods with low noise propagation
 - PYRAMID (Ragazzoni)
 - MACH-ZEHNDER (Angel)
 - NON LINEAR CURVATURE SENSOR (Guyon)
- Robustness
 - SHACK-HARTMANN: Linear and high dynamical range: best for robustness
 - MACH-ZEHNDER: dynamical range limitation from phase ambiguity
 - PYRAMID with modulation
 - NON LINEAR CURVATURE SENSOR: Suitable but many iterations required
- Fast Reconstruction
 - SHACK-HARTMANN Sparse interaction matrix (FRIM, FFT control)
 - PYRAMID: non sparse matrix. Fourier control possible
 - MACH-ZEHNDER: Sparse matrix+ simple Model (FRIM control)
 - NON LINEAR CURVATURE SENSOR: FFT + large number of iterations

Set-up Objectives

- R&D for future ELT instruments
 - Test and optimise different configuration of the Mach-Zehnder WFS
 - Prove feasibility of XAO with E-ELT
- Develop advanced control algorithms: (Matrix-Vector multiplication not feasible). Close loop control for XAO (inverse approach, Fractal Iterative method, (and multi-lambda concept))
- Integrate new high-contrast imaging techniques
 e.g. phase-mask
 coronagraphs,
 apodisers, reflective Lyotstop

XAO Set-up scales

System overview			
	XAO Setup scale	ELT scale	
Mach-Zehnder wavefront sensor (MZWFS)			
Pupil spatial resolution	1200 pixels	3.5cm	
Wavefront detection accuracy	Several nanometers (measured on bench) for P-V max = 600 nm		
Deformable Mirror (DM) corrector: woofer			
Pupil spatial resolution	12x12 actuators	2.9m	
Wavefront correction dynamic	6 microns PTV		
Spatial Light Modulator (SLM) corrector: tweeter			
Pupil spatial resolution	512x512 pixels	7 cm	
Wavefront correction accuracy	4 nanometer		
Turbulence phase screen			
Pupil spatial resolution	3000 pixels on diameter	lcm	
Wavefront accuracy	~15 nanometer		
Control Loop			
Control frequency	~100Hz	>1kHZ (not on the bench)	

XAO Bench Optical Setup

- Sources: He-Ne 632nm laser, super continuum white light
- Turbulence simulator: rotating AO-corrected phase mask-
- Wavefront sensor: Mach-Zehnder interferometer, visible-light camera
- Wavefront corrector: Spatial Light Modulator (SLM), Deformable Mirror (DM)
- Reference arm with a pinhole $\sim \lambda/D$ diameter

Mach-Zehnder interferometer

Model

$I_1 = C - Bsin(\varphi_1 - \varphi_2 + \delta) -$

$$I_2 = D + Bsin(\varphi_1 - \varphi_2 + \delta)$$

Advantages

- For small phases variations ~ linear equation
- No noise propagation: pixel to pixel processing, on input of segmentation in the pupil
- Spatial resolution limited to the number of pixel of the camera
- The constants B, C, D can be estimated using the flux measurements of each arm of the MZ (not interfering)
- Drawbacks
- Wrapping of the phase in sinus : methods of "Desinusing", to be used only to close the loop.
- Tip-tilt servo loop required, to minimise pinhole transmission variation

HARISSA

RAI

- Clipping of the raw data and segmentation
- Select a starting region whithout ambiguities
- Fit the sinus of the phase with a curvature regularisation
- Extrapolate
- Evaluation :
 - Sensitive to constrat variation
 - Iterative process, eventhough the number of step could be reduced
 - Still risk of failure

Loupias Magali - WFS workshop - Padova - October 2017

Desinusing methods

- Waffle modulation :
 - The SLM is used to send a small modulation
 ~0.04λ at high spatial frequencies
 - For the time being the error signal built by
 - $\mathsf{E} = \frac{I_1 I_2}{I_1 + I_2} = \mathsf{A}' + \mathsf{Bsin}(\phi + modul) \text{ is used}$
 - The sum and difference of error signals are then
 - Sum/2=A+Bsin(φ)cos(modul)
 - Difference/2=B cos(\$\$\$)sin(modul)

1111111111111111111111

1000

600

modulated error signal

Desinusing methods

- Waffle modulation :
 - Assuming a small modulation
 - Bcos(\emptyset) sin(modul) ~ B α cos(\emptyset) sign(modul)
 - The sign of cos(φ) allows to remove the ambiguity to reach φ [2π]
 - Classical unwrapping if necessary

OR

- Calibration of the sin(modul) and cos(modul) from the data
- Direct estimation of
 - Sin(φ)
 - Cos(φ)
- Phase retrieved ϕ [2 π]
- Classical unwrapping if necessary

Loupias Magali - WFS workshop - Padova - October 2017

Desinusing

MZ sensitivity and dynamic

- Sensitivity of MZ :
 - Reconstructed modulation phase
 - 5-10nm PTV wavefront accuracy

- Dynamic increase with desinusing :
 - 1 micron PTV wavefront

- Spatial resolution suited to ELT scale ~20cm
- Set up already tested on 10-20nm spectral bandwidth sources.

rad

8.3266 7E-17

0.4

-0.2

Conclusion

- Desinusing techniques:
 - Curvature propagation is sensitive to contrast variation, iterative process
 - Waffle modulation : robust method.
 - Work on going: estimation of the arms flux to work directly on raw images and not on the error signal

Short and long term perspectives

- Test spectrally spread sources
- Test different control algorithms
- Implement an imaging path, to host a coronagraph and a Lyot-Stop
- Perform a Lyot-based pointing control system (LPCS)

Loupias Magali - WFS workshop - Padova - October 2017