

LINC-NIRVANA Pre-commissioning and first photons from sky...

Valentina Viotto

M. Bergomi, C. Arcidiacono, L. Marafatto
J. Farinato, R. Ragazzoni, M. Dima
and the LINC-NIRVANA Team

LINC-NIRVANA summary

Valentina Viotto – A

Daytime Testing

Instrument Status

- . D.1 Instrument States and Transitions
 - 1. Activate Instrument
 - 2. Powering up Hardware Subsystems
 - 3. Starting up Services and Initialize
 - 4. Shutting down Services
 - 5. Powering off Hardware Subsystems
 - 6. Deactivate Instrument
 - 7. Emergency Shutdown
- D.2 Instrument Operability
 - D.2.1 GWS
 - D.2.2 MHWS
 - · D.2.3 Patrol Camera
 - D.2.4 Xinetics Deformable Mirror
 - . D.2.5 Warm Optics Positioning
 - · D.2.6 Piston Mirror
 - D.2.7 Warm Dichroics
 - o D.2.8 K-Mirror
 - · D.2.9 Calibration Unit
 - D.2.10 Bench Cover
 - D.2.11 Cryostat Secondary Mirror
 - D.2.12 Cryostat Dichroic Wheel

 - D.2.13 Cryostat Filter Wheel
 - . D.2.14 Science Detector Positioning
 - D.2.15 Science Detector Readout
 - · D.2.16 Pupil Imager
 - D.2.17 Annular Mirror
- D.3 TCS Communication
- . D.4 FLAO / BCU Fast Link Communication
- . D.5 GWS Calibration
 - D.5.1 SEs alignment
 - D.5.2 Reconstructor calculation
- . D.6 MHWS Calibration
 - D.6.1 Reconstructor Calculation
 - D.6.2 Sparse Metapupil Mask
- . D.7 Instrument Telemetry
 - D.7.1 Cryostat Sensor Services
 - D.7.2 Auxiliary Sensor Services
 - · D.7.3 Cabinet Temperature Monitoring
- . D.8 Acquire and Observe Sequence

Calibration

- . C.1 Science Detector Calibration
 - o C.1.1 Gain
 - · C.1.2 Bad Pixels
 - · C.1.3 Read Noise
 - C.1.4 Linearity
 - · C.1.5 Dark Current
 - C.1.6 Flat Field
 - · C.1.7 Cross-Talk · C.1.8 Persistence
 - · C.1.9 Pattern Noise
- · C.2 Deformable Mirror Flat
- C.3 Parasitic Background Light

Nighttime Testing - Functionality

- N.1 Telescope Control
 - o N.1.1 Preset
 - N.1.2 Focus
 - N.1.3 Telescope Mode and Offset
 - . N.1.4 Focal Plane Geometry Science Detector and Patrol Camera
 - . N.1.5 Focal Plane Geometry GWS and MHWS
- . N.2 GWS Single Star Acquisition
- . N.3 GWS Single Star Closed Loop
- N.4 MHWS Single Star Acquisition
- N.5 MHWS Single Star Closed Loop On-Axis
- . N.6 MHWS Single Star Closed Loop Off-Axis
- . N.7 GWS Multiple Star Acquisition
- . N.8 GWS Multiple Star Closed Loop
- . N.9 MHWS Multiple Star Acquisition
- N.10 MHWS Multiple Star Closed Loop
- . N.11 MCAO Operation
- . N.12 Open Loop Offset and Resume
- · N.13 Closed Loop Offset and Resume
- . N.14 Tip-Tilt Offload

Nighttime Testing - Performance

- . P.1 Asterism Acquisition Efficiency
- · P.2 Bright Asterism Strehl
- · P.3 Faint Asterism Strehl
- P.4 Photometric Performance
 - · P.4.1 Instrument Throughput
 - P.4.2 Filter Zero Points
 - P.4.3 Filter Sky Background

PC runs

- P.4.4 Limiting Magnitude (all filters)
- · P.4.5 Photometric Uniformity
- . P.5 PSF Uniformity
- P.6 Image Scale and Distortion
- P.7 Ghost Images and Scattered Light
- P.8 Airmass Dependent Performance
- · P.9 Seeing Dependent Performance
- P.10 Asterism Dependent Performance

Commissioning Overview

. Commissioning Overview Table

Commissioning Checklist

(to be filled out as commissioning proceeds)

· Commissioning Checklist

Com runs

Pre-commissioning activities

- LN Internal Alignment fine-tuning
- LN Integration on the telescope
- Alignment of telescope to LINC-NIRVANA
- GWSs Interaction Matrices calibration
- A lot of debugging...

Pre-commissioning

- LN Internal Alignment fine-tuning
- LN Integration on the telescope
- Alignment of telescope to LINC-NIRVANA
- GWSs Interaction Matrices calibration
- A lot of debugging...

Valentina Viotto - ADONI Workshop 2017

Pre-commissioning

- LN Internal Alignment
 fine-tuning
- LN Integration on telescope
- Alignment of teles LINC-NIRVANA
- GWSs Interaction calibration
- A lot of debugging

Pre-commissioning

- LN Internal Align fine-tuning
- LN Integration or telescope
- Alignment of tele. LINC-NIRVANA
- GWSs Interaction calibration
- A lot of debugging

Pre-commis

- LN Internal Alignment fine-tuning
- LN Integration on the telescope
- Alignment of telescope to LINC-NIRVANA
- GWSs Interaction Matrices calibration
- A lot of debugging...

Pre-commis

1) Place Argos Sung Arm On LUCT
2) Place M1, M2, M3 is nominal Luci all pas night #1
3) Switch on ref. in M2

- LN Internal Alignment fine-tuning
- LN Integration on the telescope
- Alignment of telescope to LINC-NIRVANA
- GWSs Interaction Matrices calibration
- A lot of debugging...

Basically:

- ARGOS calibration unit arm central reference fiber
- Correct collimation position for LUCI nighttime
- On **LUCI1 AGW**: minimize coma and center hotspot (M2)
- Delta-Focus M2
- Move M2-M3 in order to get, at the same time
 - On <u>LN P-CAM</u>: spot centered on the hotspot
 - On LN-HWS: center light on on-axis SE

Pre-commissioning activities

- LN Internal Alignment fine-tuning
- LN Integration on the telescope
- Alignment of telescope to LINC-NIRVANA
- GWSs Interaction Matrices calibration
- A lot of debugging...

Pre-commissioning activities

- LN Internal Alignment fine-tuning
- LN Integration on the telescope
- Alignment of telescope to LINC-NIRVANA
- GWSs Interaction Matrices calibration
- A lot of debugging...

GWSs IM calibration

Push-pull method to compute the mapping between ASM modal basis (Karhunen-Loève) and GWS signals.

Average of up to 15-20 Interaction Matrices to increase signal (100 modes)

Valentina Viotto ADOM Workshop 201

GWSs IM calibration

Automatic Rotating IM upload is needed

Sky rotates

GWS de-rotator follows the sky rotation (to keep pyramids on the stars images)

ASM is fixed (hopefully (**))

Relation between WFS subapertures and ASM actuators depends on the de-rotation angle

	Static Setup	Field de-rotation
Sky		
LBT Pupil		
F/15 FP		
Re-imaged Pupils		

Pre-commissioning activities

- LN Internal Alignment fine-tuning
- LN Integration on the telescope
- Alignment of telescope to LINC-NIRVANA
- GWSs Interaction Matrices calibration
- A lot of debugging...

HW:

- Insufficient M2 illumination Opal diffuser
- Failure of DX Fast Link Replaced
- CCD39 noise/behavior Temperature issue -> solved

SW:

- Failure of DX Fast Link (no feedback)
- Communication with ASM
- Rotating matrices upload

Weather forecast

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science channel de-rotation trajectories
- single star acquisition with SX and DX GWS
- single on-axis star acquisition with SX HWS
- single star closed loop with SX GWS
- multiple star acquisition with SX GWS
- multiple star closed loop with SX GWS

Com-1 weather:

Scheduled: 7 half-nights

Open dome: 4 half-nights

- Seeing < 1"

Comparison: Pathfinder

Scheduled: 14 half-nights

Open dome: < 5 half-nights

- very fractioned
- Seeing: ~ 1"- 3"

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science channel de-rotation trajectories
- single star acquisition with SX and DX GWS
- single star closed loop with SX GWS
- multiple star acquisition with SX GWS
- multiple star closed loop with SX GWS

GWS entrance FoV and de-rotator

HWS entrance FoV and K-mirror

Science channel

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science channel de-rotation trajectories
- single star acquisition with SX and DX GWS
- single star closed loop with SX GWS
- multiple star acquisition with SX GWS
- multiple star closed loop with SX GWS

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science channel de-rotation trajectories
- single star acquisition with SX and DX GWS
- single star closed loop with SX GWS
- multiple star acquisition with SX GWS
- multiple star closed loop with SX GWS

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science chanr de-rotation trajectories
- single star acquisition with SX and DX GWS
- single star closed loop with SX GWS
- multiple star acquisition with SX GWS
- multiple star closed loop with SX GWS

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science channel de-rotation trajectories
- Single star acquisition with SX and DX GWS
- Single star closed loop with SX GWS
- Multiple star acquisition with SX GWS
- Multiple star closed loop with SX GWS

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science channel de-rotation trajectories
- Single star acquisition with SX and DX GWS
- Single star closed loop with SX GWS
- Multiple star acquisition with SX GWS
- Multiple star closed loop with SX GWS

- Multiple star acquisition with SX GWS
- Multiple star closed loop with SX GWS

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science channel de-rotation trajectories
- Single star acquisition with SX and DX GWS
- Single star closed loop with SX GWS
- Multiple star acquisition with SX GWS
- Multiple star closed loop with SX GWS

- Verification of Geometries
- Measurements to get prelimit throughput
- Testing and verification of (including offset, auto-ce
- Verification of GWS de-relation (both SX and DX)
- Verification of SX K-mirro de-rotation trajectories
- Single star acquisition with SX
- Single star closed loop with SX GN
- Multiple star acquisition with SX GWS
- Multiple star closed loop with SX GWS

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science channel de-rotation trajectories
- Single star acquisition with SX and DX GWS
- Single star closed loop with SX GWS
- Multiple star acquisition with SX GWS
- Multiple star closed loop with SX GWS

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science channel de-rotation trajectories
- Single star acquisition with SX and DX GWS
- Single star closed loop with SX GWS
- Multiple star acquisition with SX GWS
- Multiple star closed loop with SX GWS

Commissi Cource 09 0 1 11 0 20 Mars

Source 08.9+11.9 - 29 March 2017 1.0 arcsec seeing at 1.5 airmasses K'filter

- Verification of Geometries
- Measurements to get preliminary instrument throughput
- Testing and verification of auto-guiding (including offset, auto-center)
- Verification of GWS de-rotation trajectories (both SX and DX)
- Verification of SX K-mirror and science channel de-rotation trajectories
- Single star acquisition with SX and DX GWS
- Single star closed loop with SX GWS
- Multiple star acquisition with SX GWS
- Multiple star closed loop with SX GWS

DX - No AO (uncollimated)

SX - GLAO with 5 reference stars and 20 modes

ova

Valentina Viotto – ADONI Workshop 2017

N

o now...!

ova

Valentina Viotto – ADONI Workshop 2017

