ADONI2017 Workshop Padova, 10-12/04/2017

The Software Package AIRY v.7.1 New post-AO deconvolution methods and results

A. La Camera¹, M. Bertero¹, P. Boccacci¹, M. Carbillet²

¹DIBRIS, University of Genoa, Italy ²Lagrange, UCA, OCA, CNRS, France

Outline

- Introduction to CAOS & AIRY system
- The Software Package AIRY, version 7.1
- New algorithms and new modules for AIRY
- An example of High Dynamic Range data: deconvolution of lo images

[DEMO on request -> coffee break]

A (very) short introduction

- The Astronomical Image Restoration in interferometrY (AIRY) software was born in 2001 [1] together with the CAOS Problem Solving Environment (PSE) [2,3].
- The CAOS PSE has two updated Software Packages: AIRY and CAOS.
- Available versions online: CAOS PSE 7.0, Soft.Pack. CAOS 7.0, Soft.Pack. AIRY
 7.1
- An update of the whole tool will be presented at AO4ELT#5 (please visit the Marcel's poster)

Correia, S., Carbillet, M., Fini, L., et al. 2001, in Astronomical Data Analysis Software and Systems X, 404.
 Fini, L., Carbillet, M., & Riccardi, A. 2001, Astron Data Anal Softw Syst X, 238, 253.

[3] Carbillet, M., Verinaud, C., Guarracino, M., et al 2004, SPIE Proc. 5490, 637.

The CAOS Problem Solving Environment

System

Requirements:

- Win / Mac / Linux PC
- IDL (at least version 7.0)
- The IDL Astronomy User's Library

Downloadable from:

http://lagrange.oca.eu/caos

1	388 a	ndrea@ca	alimero: ~
%	Compiled	module:	AIC_INFO.
%	Compiled	module:	ATA_INFO.
%	Compiled	module:	ATM_INFO.
%	Compiled	module:	AVE_INFO.
%	Compiled	module:	BQC_INFO.
%	Compiled	module:	BSP_INFO.
%	Compiled	module:	CFB_INFO.
%	Compiled	module:	COM_INFO.
%	Compiled	module:	COR_INFO.
%	Compiled	module:	DMC_INFO.
%	Compiled	module:	DMI_INFO.
%	Compiled	module:	GPR_INFO.
%	Compiled	module:	IBC_INFO.
%	Compiled	module:	IMA_INFO.
%	Compiled	module:	IMG_INFO.
%	Compiled	module:	IWS_INFO.
%	Compiled	module:	LAS_INFO.
%	Compiled	module:	MDS_INFO.
%	Compiled	module:	NLS_INFO.
%	Compiled	module:	PYR_INFO.
%	Compiled	module:	REC_INFO.
%	Compiled	module:	SCD_INFO.
%	Compiled	module:	SLO_INFO.
%	Compiled	module:	SRC_INFO.
%	Compiled	module:	SSC_INFO.
%	Compiled	module:	STF_INFO.
%	Compiled	module:	SWS_INFO.
%	Compiled	module:	ICE_INFO.
%	Compiled	module:	IFL_INFO.
%	Compiled	module:	TIM_INFO.
%	Compiled	module:	WFA_INFO.
76	Compiled	module:	DIS_INFO.
76	compiled	module:	REI_INFO.
%	Compiled	module:	SAV_INFO.
76	Complied	module:	WFT_INFO.
76 97	Compiled	module:	RANTE
70 9/	Compiled	module:	MODULE DEETN
/6 9/	Compiled	module:	OPENPROJECT
% %	Compiled	module:	SETURMOVERROI
20	Compiled	modulo:	SETOVERIAV
20 9/	Compiled	modulo:	UNSETOVERLAT.
70	compilied	nouute:	UNSETOVERLAY.

CAOS Problem-Solving Environment - 7.0

-	AIRY_Software_Package_7.1 ►	ADN - ADd Noise to image	
Project name	CAOS_Software_Package_7.0 ~ Utilities ~ S*S - feedback stop	ANB - ANalysis Binary CBD - Constrained Blind Deconvolution CNV - object-PSF CoNVolution	
		DEC - DEConvolution process FSM - Find Star Module MCD - Multi-Component Deconvolution OBJ - OBJect definition	
		PRE - PRE-processing	
		RTI - RoTate Image	
			_

The Software Package AIRY, v. 7.1

- AIRY contains 11 *modules*, each one performs a task (simulation, deconvolution, data analysis, and utility).
- DEC and MCD are the heart of a deconvolution project.
- Other modules are designed for a specific goal: Constrained Blind Deconvolution, Psf EXtraction

Deconvolution with DEC

DEC contains:

- Standard methods based on RL (+multiple images versions: RLM and OSEM [4]) and SGP [5].
- Boundary Effects Correction
- 9 regularizations
- 4 stopping rules

[4] Bertero, M., & Boccacci, P. 2000, Astron Astrophys Suppl, 144, 181

[5] Bonettini, S., Zanella, R., & Zanni, L. 2009, Inverse Probl, 25, 15002

Multi-component method

In the last years we developed a new method for the restoration of the high dynamic range images:

• Jets from YSO [6,7,8]: we developed Multi Component RL (MC-RL): an RL-based method able to separately reconstruct the point-like part and the diffuse (or extended) part of the image.

[6] La Camera, A., Antoniucci, S., Bertero, M., et al. 2014, PASP, 126, 180
[7] Antoniucci, S., La Camera, A., Nisini, B., et al. 2014, A&A, 566, A129
[8] Antoniucci, S., Podio, L., Nisini, B., et al. 2016, A&A, 593, L13.

Multi-component method

We extended SGP with Multi-Component SGP (MC-SGP)

- Starting from version 7.0, AIRY has a new module called Multi-Component Deconvolution
- We must provide a "mask": i.e. the positions of the point-like sources.

"we knows where they are but their intensities will be determined by the algorithm."

Multi-component method

Nowadays we are applying the new method to other HDR images:

- The images of Io [9]: we are working at multiple images (LBTI) and single images (Keck) [Prato et al, *in prep*]
- A **binary star** with a circumstellar **ring**, already analyzed in [10]

[9] Conrad, A., de Kleer, K., Leisenring, J., et al. 2015, AJ, 149(5), 175 -- see also ADONI 2016,M. Bertero's talk

[10] Anconelli, B., Bertero, M., Boccacci, P. et al. 2006, A&A 460, 359

We start with a simulated observation of lo by Keck-II (M band) to test our method and to better understand how the parameters modify the results.

The Multi-Step Method (MSM)

- 1. Deconvolve the input image by a standard deconvolution method and a regularization, possibly (DEC)
- 2. Compute the centroids of the bright spots \rightarrow mask M_{p}
- Apply Multi-Component Method (MCD). We need *good* choices for the regularization function & parameters. Reconstruct f_E
- 4. Redefine the background b' = b + K*f_E and reconstruct (again DEC) h = f - f_E

Checkpoint at 3rd step: the residual

In case of Poisson noise and perfect reconstruction, the residual **R** is an array of "white noise" with median 0 and sigma 1.

 $R = \frac{g - (K * f + b)}{\sqrt{K * f + b}}$

If one (or more) of the point-like sources is placed in a "wrong" position, then the residual shows a "bump".

The values (+/-) of the bump give information about the direction.

(*left*) Something is "wrong" with S1 and S2; (*middle*) we adjust the positions and the two "bumps" are gone, but S3 (on purpose!) has been moved away from its position; (*right*) a (small) residual disk: something should be changed... (regularization parameters? PSF? Background?)

First step: SGP+HS vs AIDA: (left) simulated image, (right) Keck image in band M [11]

Second step: mask definition

[11] De Pater, I., Laver, C., Davies, A. G., et al. 2016 *Icarus*, 264, 198–212.

Third step: MC-SGP+HS

In simulation we can explore the parameters space (2D) and find the couple that minimizes the restoration error (of the diffuse part).

(left to right) increasing the regularization parameter we have a smoother reconstruction

(top to bottom): the other parameter is less important

Third step: MC-SGP+HS

- In simulation we can explore the parameters space (2D) and find the couple that minimizes the restoration error (of the diffuse part).
- (left to right) increasing the regularization parameter we have a smoother reconstruction
- (top to bottom): the other parameter is less important

Third step: MC-SGP+HS

In real image we can still explore the 2D space of the parameters...

BUT

- in this case, of course, we cannot say which one is the "best" reconstruction.
- Again, we can look at the residuals...

Third step: MC-SGP+HS

In real image we can still explore the 2D space of the parameters...

BUT

- in this case, of course, we cannot say which one is the "best" reconstruction.
- Again, we can look at the residuals...

...and find some useful information

Last step: SGP+L1

In simulation this step is not needed, we have the object at the 3rd step

BUT

in real image case we cannot say this...

MOREOVER

Also in this case we have a regularization parameter to be found... again the residuals can help us!

Conclusions and future works

In the next months we will have:

- A paper with all the details about our method and the simulations for validating it.
- A new version of the whole CAOS PSE + packages (AO4ELT5 poster)

Deconvolution of:

- Real images of Io, both from LBTI [full-map paper in prep.] and Keck;
- Data from SPHERE/VLT visible and near-infrared;

Further ideas:

- Space-variant deconvolution method for Post-Coronagraph images (SPHERE/VLT)
- We want you! Do you have data that are waiting for a deconvolution?

Thanks for your attention!