

SHARK-NIR overview and optomechanical design: an update

Davide Greggio

The SHARK-NIR Team: J.Farinato¹, F.Pedichini², E.Pinna³, C.Baffa³, A.Baruffolo¹, M.Bergomi¹, A.Bianco⁸, L.Carbonaro³, E.Carolo¹, A.Carlotti⁴, M.Centrone², L.Close⁵, J.Codona⁵, M.De Pascale¹, M.Dima¹, S.Esposito³, D.Fantinel¹, G.Farisato¹, W.Gaessler⁶, E.Giallongo², D.Greggio¹, J.C.Guerra⁵, O.Guyon⁵, P.Hinz⁵, C.Knapic⁹, F.Lisi³, D.Magrin¹, L.Marafatto^{1,7}, A.Puglisi³, R.Ragazzoni¹, B.Salasnich¹, M.Stangalini², R.Smareglia⁹, D.Vassallo^{1,7}, C.Verinaud⁴, V.Viotto¹, A.Zanutta⁸

WHY SHARK

Considering:

- The excellent AO performance
- The current and next generation LBT instruments scenario
- The Northern Emisphere scenario
- The strong science case
- The wish to make a fast track project

We proposed to build:

- a simple camera (compact, light, close to the WFS) designed for high contrast imaging
- working in **VIS** and **NIR** bands
- capable to do:
 - Coronagraphy
 - Direct Imaging
 - LR Spectroscopy

WHAT IS SHARK?

SHARK-NIR

- Coronagraphic camera with spectroscopic capabilities
- Extreme adaptive optics correction of FLAO
- Synergy with other LBT instruments: SHARK-VIS, LMIRCam

SHARK POSITION AT LBT

Photo credit: LBTO - Enrico Sacchetti

LABORATORIO NAZIONALE ADONILE OTTICA ADATTIVA

SHARK – SCIENCE TARGETS

Main science target: direct imaging of **exo-planets** (detection and characterization)

Other science:

- Brown dwarfs
- Protoplanetary disks
- Stellar jets
- AGN

INSTRUMENT SPECIFICATIONS

SHARK NIR main characteristics

Observing Modes	Imaging/Coronagraphy/Spectroscopy/DBI
Detector format [px]	2048x2048 (≈1220x1220 used area)
Waveband [µm]	0.96 – 1.7
FoV x ["]	18
FoV y ["]	18
FoV along the diagonal ["]	25.5
Plate scale [mas/px]	14.5
Airy Radius @ 0.96 micron [px]	2
# of mirrors in the camera	8 (3 flat, 1DM and 4 OA parabolas)
ADC	Yes
Nominal Strehl at <18" FoV diameter (in all Bands)	>98%

OPTO-MECHANICAL LAYOUT

Optical bench + Cryostat

SHARK Holding structure

OPTO-MECHANICAL LAYOUT

CORONAGRAPHY IN SHARK

CORONAGRAPHIC TECHNIQUES

- ✓ Gaussian Lyot
- ✓ Shaped pupil (both symmetric and asymmetric discovery space)
- ✓ APLC/4 Quadrant (?)

Field stabilized mode (de-rotator ON) requires circular symmetric masks (Classical Lyot and Gaussian Lyot).

Shaped Pupil and APLC are used in Pupil stabilized mode (de-rotator OFF)

CORONAGRAPHIC PERFORMANCE

SHARK – OPTICAL LAYOUT

SHARK – OPTICAL LAYOUT

SPECTROSCOPIC MODE

DISPERSIVE ELEMENTS			
	Low Res	Medium Res	
Dispersing element	Prism	Grism	
R	100	700	

CORO SLITS WITH OCCULTER			
	Slit width	Occulter size	
Coro slit 1	100 mas	100 mas	
Coro slit 2	100 mas	200 mas	

DUAL BAND IMAGING MODE

RECENT UPDATES – FAST TT SENSOR

ADONALE OTTICA ADATTIVA

Tip-tilt WFS upgrade

- New InGaAs camera (C-RED2)
- Sensitive in the full SHARK-NIR waveband (0.96-1.7 µm)
- Frame-rate up to 14KHz (with 32X32 px window)
- Same FoV as before (11"x13")
- Low RON (<25e⁻)
- 3 mas precision up to mag=12 @ 1KHz

BEFORE NOW Basler Aca 1300-60gm-NIR First Light CRED2 1 inch lens 2 inches lens

RECENT UPDATES – INTERNAL NCPA CORRECTION

Tip-tilt mirror upgrade

- Tip-tilt mirror replaced by ALPAO DM 97-15
- 97 actuators, 13.5 mm pupil •
- NCPA can be corrected internally without affecting pyramid's performance
- Smaller volume
- NCPA measured with phase • diversity on science image

THE SHARK-NIR TEAM

- ✓ INAF-Padova (Project Responsible, Opto-Mechanics and INS Software)
- ✓INAF-Arcetri (AO Interaction and NIR camera testing support)
- Steward Observatory (LBTI interfaces, NIR camera sub-system)
- ✓INAF-Brera (Dispersive elements design)
- ✓MPIA (for motors electronics and SW design support)
- ✓ IPAG (CORO mask design)
- ✓ INAF-Roma (Coordination with VIS Channel)
- ✓INAF-Trieste (Data archiving)
- ✓ Science team (astronomers from 12 institutes)

CURRENT STATUS

- LBT board approval: end of April 2017
- **Procurement phase:** June 2017 September 2018
- AIV phase: September 2017 January 2019
- Preliminary Acceptance Europe: January 2019
- Commissioning start: June 2019
- SHARK-NIR operation: October 2019