Dynamics of Stars and Black Holes in Dense Stellar Systems II

Innsbruck, January 16 2018

Michela Mapelli

Based on last lecture, WHAT are the possible effects of dynamics on BH binaries?

1. HARDENING:

After 3-body encounters, the semi-major axis shrinks and the BH-BH (or BH-NS or NS-NS) binary becomes important as gravitational wave (GW) source

Michela Mapelli

1

HARDENING TIMESCALE

$$t_h = \left|\frac{a}{\dot{a}}\right| = \frac{1}{2\pi G\xi} \frac{\sigma}{\rho} \frac{1}{a}$$

1

GRAVITATIONAL WAVE (GW) TIMESCALE

$$t_{GW} = \frac{5}{256} \frac{c^5 a^4 (1 - e^2)^{7/2}}{G^3 m_1 m_2 (m_1 + m_2)}$$

Combining 1) and 2) we can find the maximum semi-major axis for GWs to dominate evolution

$$a_{GW} = \left[\frac{256}{5} \frac{G^2 m_1 m_2 (m_1 + m_2) \sigma}{2 \pi \xi (1 - e^2)^{7/2} c^5 \rho}\right]^{1/5}$$

Number of encounters before GW regime:

$$N_{int} = \int_{0}^{t} R \, dt = \int_{0}^{t} \frac{2 \pi G m_T n a}{\sigma} \, dt$$

$$= \int_{a_0}^{a(t)} \frac{2 \pi G m_T n a}{\sigma} \frac{\sigma \, da}{-2 \pi G \, \xi \rho \, a^2} = \int_{a(t)}^{a_0} \frac{1}{\xi} \frac{m_T}{\langle m \rangle} \frac{da}{a}$$

$$\frac{da}{dt} = -2 \pi G \, \xi \, \frac{\rho}{\sigma} \, a^2$$

$$= \frac{1}{\xi} \frac{m_T}{\langle m \rangle} \ln\left(\frac{a_0}{a(t)}\right)$$

Michela Mapelli

Hills 1992, AJ, 103, 1955; Kulkarni+ 1993, Nature, 364, 421; Sigurdsson & Hernquist 1993, Nature, 364, 423; Portegies Zwart & McMillan 2000, ApJ, 528, L17; Aarseth 2012, MNRAS, 422, 841; Breen & Heggie 2013, MNRAS, 432, 2779 ETC ETC...

2. EXCHANGE:

Exchanges are very important: bring BHs in binaries

BHs are FAVOURED BY EXCHANGES BECAUSE THEY ARE MASSIVE! BH born from single star in the field never acquires a companion BH born from single star in a sc likely acquires companion from dynamics

2. EXCHANGE:

>90% BH-BH binaries in young star clusters form by exchange (Ziosi+ 2014) EXCHANGES FAVOUR THE FORMATION of BH-BH BINARIES WITH * THE MOST MASSIVE BHs * HIGH ECCENTRICITY * MISALIGNED BH SPINS

Michela Mapelli

Ziosi, MM+ 2014, MNRAS, 441, 3703; Rodriguez+ 2015, Phys. Review Letter, 115, 1101; Rodriguez+ 2016, PhRvD, 93, 4029; Askar+ 2017, MNRAS, 464, L36; Banerjee 2017, MNRAS, 467, 524 and many others

Rodriguez+ 2016, *PhRvD*, 93, 4029

- high eccentricity at formation
- small eccentricity when reaching LIGO-Virgo range

Ziosi, MM+ 2014, MNRAS, 441, 3703; Rodriguez+ 2015, Phys. Review Letter, 115, 1101; Hurley+ 2016, PASA, 33, 36; Askar+ 2017, MNRAS, 464, L36; Banerjee 2017, MNRAS, 467, 524 and many others

3. EJECTIONs:

Internal energy is extracted from the binary

- Converted into KINETIC ENERGY of the INTRUDER AND of the centre-of-mass of the BINARY
- **BOTH RECOIL** and can be ejected from star cluster

BHs and NSs are ejected from host star clusters by DYNAMICS and NATAL (SN) KICKS

Simulations of young star clusters @ t=100 Myr

Are host-less short GRBs associated with dynamical ejections?

Fong+ 2013, ApJ, 769, 56

ISSUE: dynamical kicks 0 – 200 km/s

not enough to unbind system from host galaxy

4. KOZAI-LIDOV RESONANCE:

Michela Mapelli

4. KOZAI-LIDOV RESONANCE:

ECCENTRICITY AND INCLINATION OSCILLATE

TRIGGERING MERGERS / COLLISIONS between binary members

→ IMPORTANT FOR GRAVITATIONAL WAVES

TERTIARY ON OUTER ORBIT

YOU MIGHT SAY: TRIPLES SHOULD BE VERY RARE AND KL RESONANCE IS NEGLIGIBLE INSTEAD ~ 10 % STARS ARE IN TRIPLE SYSTEMS

(Raghavan et al. 2010; Riddle et al. 2015)

ORBITAL PLANE OF INNER BINARY

Michela Mapelli

4. KOZAI-LIDOV RESONANC

ECCENTRICITY AND INCLINATION OSCILLATE

TRIGGERING MERGERS between binary members

 $\rightarrow \text{ IMPORTANT FOR} \\ \textbf{GRAVITATIONAL WAVES} \\$

YOU MIGHT SAY: TRIPLES SHOULD BE VERY RARE AND KL RESONANCE IS NEGLIGIBLE INSTEAD ~ 10 % STARS ARE IN TRIPLE SYSTEMS (Raghavan et al. 2010; Riddle et al. 2015)

Kimpson+ 2016

g

Michela Mapelli

4. KOZAI-LIDOV RESONANCE: No post-Newtonian (PN)

PN: treatment of Einstein's non-linear equations as lowest-order deviations from Newton's equation

> ~ 50% more MERGERS of BH-BH binaries in young dense star clusters If Kozai accounted for

Kimpson, Spera, MM, Ziosi 2016, MNRAS, 463, 2443

Antognini+ 2014, MNRAS, 439, 1079; Antonini+ 2016, ApJ, 816, 65; Antognini+ 2016, MNRAS, 456, 4219; Kimpson+ 2016, MNRAS, 463, 2443; Antonini+ 2017arXiv170306614A

KOZAI-LIDOV particularly efficient in NUCLEAR STAR CLUSTERS:

Schoedel et al. 2002, Nature, 419, 694

KOZAI-LIDOV particularly efficient in NUCLEAR STAR CLUSTERS:

- * high escape velocity (BHs are retained)
- * triple might be with SMBH

KOZAI-LIDOV particularly efficient in NUCLEAR STAR CLUSTERS:

Antonini & Perets 2012, ApJ, 757, 27

5. Intermediate-mass black holes (IMBHs): BHs with mass 10^{2 - 5} M⊙ OBSERVATIONAL EVIDENCES: none, just hints

<u># 1 Hyperluminous X-ray source HLX-1 close to ESO 243-49</u>

peak L_{χ} ~10⁴² ergs, X-ray VARIABILITY, redshift consistent with ESO 243-49 (not a background object) \rightarrow BH mass~10⁴ M \odot

Farrell+ 2009, 2012; Soria+ 2010, 2012; MMi+ 2012, 2013

5. Intermediate-mass black holes (IMBHs): BHs with mass 10^{2 - 5} M⊙ OBSERVATIONAL EVIDENCES: none, just hints

<u># 1 Hyperluminous X-ray source HLX-1 close to ESO 243-49</u>

Webb+ 2014, arXiv:1401.1728

5. Intermediate-mass black holes (IMBHs): BHs with mass 10^{2 - 5} M⊙

<u>#2 centre of G1 globular cluster (dwarf nucleus?) in Andromeda</u>

Central velocity distribution + central M/L ratio suggest BH mass~10^4 $M\odot$

5. Intermediate-mass black holes (IMBHs): BHs with mass 10^{2 - 5} M⊙ **Requires dynamics?** How do IMBHs form? ves 1- runaway collisions of stars 2- repeated mergers of BHs yes No 3- remnants of very massive (unless very massive star (>260 Msun) extremely was dynamically formed) metal-poor stars (stellar BHs) 4- low mass end of super-massive maybe BHs (not part of this course)

5.1 IMBHs from Runaway collisions

IDEA: mass segregation brings very massive stars to the centre

- If timescale for mass segregation < timescale for SN explosion
 - + encounter rate sufficiently high
- \rightarrow massive stars collide, merge and form a super-massive star, which collapses to a BH

5.1 IMBHs from Runaway collisions

"Analytic" *formalism by Portegies Zwart & McMillan 2002, ApJ, 576,899* confirmed by their simulations

Michela Mapelli

5.1 IMBHs from Runaway collisions

MAIN ISSUE: MASS LOSS!!!

(1) during merger simulations show mass loss up to 25% of total mass (Gaburov et al. 2010, MNRAS, 402, 105) (2) after merger, by stellar winds the super-massive star will be very unstable (radiation pressure dominated) e.g. MM 2016, MNRAS, 459, 3432

Michela Mapelli

5.1 IMBHs from Runaway collisions

N-body simulations of collisional systems (direct summation N-body)

÷

stellar and binary evolution (population synthesis) embedded in N-body

can be used to study IMBH formation accounting for mass loss

5.1 IMBHs from Runaway collisions

Mass loss by stellar winds prevents formation of IMBHs from runaway collisions UNLESS METALLICITY < 0.1 Zsun e.g. MM 2016, MNRAS, 459, 3432

* maximum star mass up to 500 Msun

* 1/10 BH in the IMBH regime (>100 Msun) at Z = 0.01 – 0.1 Zsun

* CAVEAT 1: uncertainties in the evolution of very massive stars

* CAVEAT 2: uncertainties in massloss during/after collisions

MM 2016, MNRAS, 459, 3432

Formalism by Miller & Hamilton (2002)

In a old cluster stellar BHs can grow in mass because of repeated mergers with the companion triggered by 3-body encounters

MAIN PROBLEM: seed BH must avoid ejection before merger

$$v_{rec} = \frac{m_3}{m_T} \sqrt{\frac{m_3 \left(m_1 + m_2\right)}{m_e \left(m_a + m_b\right)} v_\infty^2 + \frac{2 m_T}{m_e \left(m_a + m_b\right)} \Delta E_b} \sim \frac{m_3}{m_T} \sqrt{\frac{2 m_T}{m_3 \left(m_1 + m_2\right)} \Delta E_b}}$$

$$\boxed{\frac{m_1 + m_2 \gg m_3}{m_T}} \sim \frac{m_3}{m_T} \sqrt{\frac{2 m_T}{m_3 \left(m_1 + m_2\right)} \frac{\xi m_3}{\left(m_1 + m_2\right)} E_b}} \sim \frac{m_3}{m_1 + m_2} \sqrt{\frac{2 \xi}{m_T} E_b}}$$

Find the minimum binding energy for EJECTION ($E_{b,min}$) by imposing $v_{rec} = v_{esc}$

$$\Rightarrow E_{b,min} \sim \frac{(m_1 + m_2)^3}{2\,\xi\,m_3^2} \, v_{esc}^2$$

where we assumed $m_1 + m_2 \sim m_T$

$$E_{b,min} \sim 2 \times 10^{50} \text{ erg} \left(\frac{m_1}{50 M_{\odot}}\right)^3 \left(\frac{m_3}{10 M_{\odot}}\right)^{-2} \left(\frac{\xi}{0.2}\right)^{-1} \left(\frac{v_{esc}}{50 \text{ km s}^{-1}}\right)^2$$

Orbital separation in gravitational wave merger regime:

$$a_{GW} \sim 3 \times 10^{11} \text{ cm} \left(\frac{t_{GW}}{10^6 \text{ Myr}}\right)^{1/4} \left(\frac{m_1}{50 M_{\odot}}\right)^{1/2} \left(\frac{m_2}{10 M_{\odot}}\right)^{1/4}$$

Binding energy in merger regime:

$$E_{b,\,merg} = \frac{G\,m_1\,m_2}{2\,a_{GW}} \sim 2 \times 10^{50}\,\,\mathrm{erg}\,\left(\frac{t_{GW}}{10^6\,\,\mathrm{Myr}}\right)^{-1/4}\,\,\left(\frac{m_1}{50\,M_\odot}\right)^{1/2}\,\left(\frac{m_2}{10\,M_\odot}\right)^{3/4}$$

COMPARING $E_{b,min}$ with $E_{b,merg}$:

$$x = \frac{E_{b,min}}{E_{b\,merg}} \sim \left(\frac{m_1}{50\,M_\odot}\right)^{5/2} \left(\frac{m_2}{10\,M_\odot}\right)^{-11/4} \left(\frac{t_{GW}}{10^6\,\mathrm{Myr}}\right)^{1/4}$$

If x>1 BINARY MERGES BEFORE EJECTION If x<1 BINARY IS EJECTED BEFORE MERGER

ADDITIONAL PROBLEM: INEFFICIENT!

Number of 3-body encounters for a BH to merge with its companion (from lecture 3):

$$N_{merg} = \frac{1}{\xi} \frac{m_T}{\langle m \rangle} \ln\left(\frac{a_0}{a_{GW}}\right)$$

Time required for 1 merger:

$$dt = -\frac{\sigma}{2\pi G \xi \rho} \frac{da}{a^2} \longrightarrow \int_0^{t_{GW}} dt = -\frac{\sigma}{2\pi G \xi \rho} \int_{a_0}^{a_{GW}} \frac{da}{a^2}$$
$$t_{GW} = \frac{\sigma}{2\pi G \xi \rho} \left(\frac{1}{a_{GW}} - \frac{1}{a_0}\right)$$

$$t_{GW} \sim 3 \times 10^8 \text{ yr} \left(\frac{\sigma}{10 \text{ km s}^{-1}}\right) \left(\frac{\xi}{0.2}\right)^{-1} \left(\frac{\rho}{10^6 M_{\odot} \text{ pc}^{-3}}\right)^{-1} \left(\frac{a_{GW}}{1 \text{ AU}}\right)^{-1}$$

Michela Mapelli

Giersz +2015, MNRAS, 454, 3150

SUMMARY of EFFECTs of DYNAMICS on BH binaries:

SUMMARY of EFFECTs of DYNAMICS on BH binaries:

References:

- * Portegies Zwart & McMillan, 2002, ApJ, 576, 899
- * Miller & Hamilton, 2002, MNRAS, 330, 232
- * Heger et al. 2003, arXiv:astro-ph/0211062
- * Kulkarni, Hut & McMillan 1993, Nature 364, 421
- * Sigurdsson & Hernquist 1993, Nature 364, 42
- * Giersz et al. 2015, MNRAS, 454, 3150
- * Mapelli 2016, MNRAS, 459, 3432
- * Spera, Mapelli, Bressan 2015, MNRAS, 451, 4086

Michela Mapelli

THANK YOU