Dynamics of Stars and Black Holes in Dense Stellar Systems I

Innsbruck, January 9 2018

Gravitational wave (GW) progenitors

Michela Mapelli

WHY should we care about DYNAMICS when studying BH binaries?

WHY DYNAMICS??????

Massive stars (BH progenitors) form in STAR CLUSTERS: dynamically 'ACTIVE' places (Lada & Lada 2003)

Michela Mapelli

WHY DYNAMICS??????

Massive stars (BH progenitors) form in STAR CLUSTERS

Figure from Weidner & Kroupa (2006)

Data points: observed star clusters

Lines: theoretical fits

See also Weidner, Kroupa & Bonnell (2010)

WHY DYNAMICS??????

Image credit: Jim Mazur's Astrophotography, via http://www.skyledge.net/.

Image credit: HST

YOUNG STAR CLUSTERS and OPEN CLUSTERS:

* dynamics

* short-lived (0.01 - 1 Gyr)

* cradle of massive stars (80% star formation) GLOBULAR CLUSTERS:

* dynamics

* long-lived (12 Gyr)

* < 1 % baryonic mass of the Universe

Image credit: Jim Mazur's Astrophotography, via http://www.skyledge.net/.

Image credit: HST

NUCLEAR STAR CLUSTERS:

- * dynamics
- * long-lived (12 Gyr)
- * host SUPER-MASSIVE BHs

Schoedel et al. 2002, Nature, 419, 694

WHAT KIND OF DYNAMICS?

Star clusters: high density systems (>1000 Msun pc^-3) with small dispersion velocity (~ 10 - 30 km/s)

 \rightarrow close encounters between stars are likely

M. B. Davies, 2002, astroph/0110466

Binaries have a energy reservoir (internal energy)

$$E_{int} = \frac{1}{2}\,\mu\,v^2 - \frac{G\,m_1\,m_2}{r}$$

where m_1 and m_2 are the mass of the primary and secondary member of the binary, μ is the reduced mass (:= $m_1 m_2/(m_1+m_2)$), r and v are the relative separation and velocity.

$$E_{int} = -\frac{G\,m_1\,m_2}{2\,a} = -E_b$$

THE ENERGY RESERVOIR of BINARIES can be EXCHANGED with stars during a 3-BODY INTERACTION, i.e. an interaction between a binary and a single star

If the star extracts E_{int} from the binary, its final kinetic energy (K_f) is higher than the initial kinetic energy (K_i).

To better say: K_f of the centres-of-mass of the single star and of the binary is higher than their K_i .

We say that the STAR and the BINARY acquire **RECOIL VELOCITY**.

 E_{int} becomes more negative, i.e. E_b higher: the binary becomes more bound (e.g. *a* decreases or m_1 and m_2 change). $a_f < a_i$

An alternative way for a binary to transfer internal energy to field stars and increase its binding energy E_h is an **EXCHANGE**:

the single star replaces one of the former members of the binary.

An exchange interaction is favored when the mass of the single star m_3 is HIGHER than the mass of one of the members of the binary so that the new E_b of the binary is higher than the former:

CARTOON of a EXCHANGE ENCOUNTER where $m_3 > m_2 \rightarrow E_b$ increases

EXCHANGE PROBABILITY:

Hills & Fullerton 1980, AJ, 85, 1281

If the star transfers kinetic energy to the binary, its final kinetic energy (K_f) is obviously lower than the initial kinetic energy (K_i) . To better say: K_f of the centres-of-mass of the single star and of the binary is lower than their K_i .

 E_{int} becomes less negative, i.e. E_b smaller: the binary becomes less bound (e.g. *a* increases) or is even **IONIZED (:= becomes UNBOUND)**.

CARTOON of a FLYBY ENCOUNTER where $a_f > a_i \rightarrow E_b$ decreases

Gravitational wave (GW) progenitors Michela Mapelli 3 3 A single star can IONIZE the binary only if its velocity at infinity (=when it is far from the binary, thus unperturbed by the binary) exceeds the CRITICAL VELOCITY (Hut & Bahcall 1983, ApJ, 268, 319)

$$v_c = \sqrt{\frac{G m_1 m_2 (m_1 + m_2 + m_3)}{m_3 (m_1 + m_2) a}}$$

This critical velocity was derived by imposing that the K of the reduced particle of the 3-body system is equal to E_b :

$$\frac{1}{2} \frac{m_3 \left(m_1 + m_2\right)}{\left(m_1 + m_2 + m_3\right)} v_c^2 = \frac{G m_1 m_2}{2 a}$$

Gravitational wave (GW) p

RESONANT EXCHANGE:

Credits: Aaron Geller (@Northwestern):

Movie 2 : binary – single interaction ciera.northwestern.edu/Research/visualizations/videos/Binary+single.mp4

Movie 3 : dynamical exchange ciera.northwestern.edu/Research/visualizations/videos/Binary+singleex.mp4

Movie 4: 5-body interaction (leads to a COLLISION!) ciera.northwestern.edu/Research/visualizations/videos/Triple+binary.mp4 Gravitational wave (GW) progenitors

Can we understand whether a binary will lose or acquire E_b ?

YES, but ONLY in a STATISTICAL SENSE

We define **HARD BINARIES**: binaries with binding energy higher than the average kinetic energy of a star in the cluster

$$\frac{G m_1 m_2}{2 a} > \frac{1}{2} \langle m \rangle \sigma^2$$

$$\frac{G \, m_1 \, m_2}{2 \, a} < \frac{1}{2} \langle m \rangle \, \sigma^2$$

SOFT BINARIES: binaries with binding energy lower than the average kinetic energy of a star in the cluster

HEGGIE'S LAW (1975):

Hard binaries tend to become harder (i.e. increase E_b) Soft binaries tend to become softer (i.e. decrease E_b) as effect of three-body encounters

What is the rate of three-body encounters?

CROSS SECTION for 3-BODY ENCOUNTERS:

$$\Sigma = \pi b_{max}^2$$

where b_{max} is the maximum impact parameter for a non-zero energy exchange between star and binary

For most binaries b_{max} can be expressed as

$$\Sigma = 2 \pi G \, \frac{m_T \, a}{v_\infty^2}$$

where m_T is the total mass of the binary, a its semi-major axis and v_{∞} is the typical velocity between stars in a star cluster

As usual, an interaction rate has the form

$$R = \frac{dN}{dt} = n \,\Sigma \, v_{\infty}$$

where *n* is the local density of stars. For the cross section in (*), the rate becomes

$$R = 2 \pi G \, \frac{m_T \, n \, a}{v_\infty}$$

Note: the rate depends

- (1) on the total mass of the interacting objects (more massive objects interact more),
- (2) on the semi-major axis of the binary (wider binaries have a larger cross section),
- (3) on the local density (denser environments have higher interaction rate),
- (4) on the local velocity field (systems with smaller velocity dispersion have higher interaction rate).

How much energy is exchanged during three-body encounters?

$$\frac{\Delta E_b}{E_b} \propto \frac{m_3}{m_1 + m_2}$$

$$\xi \equiv \frac{m_1 + m_2}{m_3} \frac{\langle \Delta E_b \rangle}{E_b}$$
dimensionless factor which can be derived from simulations (~ 0.1 – few)
Hills (1983, AJ, 88, 1269)

Hardening rate:

* Depends only on cluster environment and binary mass!

* Constant in time, if the cluster properties do not change and if the binary members do not exchange:

-> 'A hard binary hardens at a constant rate' (Heggie 1975, 3-body Bible)

Hardening rate:

Expressing *a* in terms of E_b (assuming m_1 and m_2 constant, i.e. no exchange)

$$\frac{d}{dt}\left(\frac{1}{a}\right) = \frac{2}{G\,m_1\,m_2}\,\frac{dE_b}{dt} = 2\,\pi\,G\,\xi\,\frac{\rho}{\sigma}$$

Also called **HARDENING RATE**

From it we can derive the average time evolution of the semi-major axis of a hard binary:

$$\frac{da}{dt} = -2\pi G \xi \frac{\rho}{\sigma} a^2$$

It means that the smaller *a*, the more difficult is for the binary to shrink further (because cross section becomes smaller).

When binary is very hard, three body encounters are no longer efficient: further evolution of the binary is affected by tidal forces or by gravitational wave emission.

Hardening timescale:

Timescale for a binary to harden by 3-body encounters

Depends only on

- * local velocity dispersion
- * local mass density
- * semi-major axis
- * parameter for efficiency of energy exchange

Gravitational wave (GW) progenitors

Michela Mapelli

THANK YOU