Binary evolution processes I

Innsbruck, December 5 2017

Formation of black hole and neutron star binaries

Lecture 3: how black holes and neutron stars form from SINGLE massive stars

BUT LIGO-Virgo observed the merger of black holes and neutron stars in binaries

WHAT ARE THE FORMATION CHANNELS OF NEUTRON STAR AND BLACK HOLE BINARIES ?

Formation of black hole and neutron star binaries

1) PRIMORDIAL BINARIES: two stars form from same cloud and evolve into two BHs gravitationally bound

2) DYNAMICAL BINARIES: BH binary forms and/or evolves

by dynamical processes

Formation of black hole and neutron star binaries

PRIMORDIAL BINARIES:

Two stars form from same cloud and evolve into two BHs gravitationally bound

NOT SO EASY: Many evolutionary processes can affect the binary

SN kick wind mass transfer Roche lobe mass transfer common envelope

tidal evolution magnetic braking orbital evolution gravitational wave decay

Population-synthesis codes

Binary evolution studied via POPULATION SYNTHESIS CODES:

- * include models of stellar evolution in a simplified way
- * include prescriptions for supernova explosions
- * include treatment of binary evolution processes
- * based on a Monte Carlo approach (direct integration would be too expensive)

Examples of used population-synthesis codes

 BSE (Hurley+ 2002; Giacobbo+ 2018)
 Seba (Portegies Zwart+ 2001; Mapelli+ 2013)
 SEVN (Spera, Mapelli & Bressan 2015; Spera & Mapelli 2017) StarTrack (Belczynski+ 2007, 2010)

By the end of these lectures you will learn how to use BSE

Gravitational wave (GW) progenitors

Michela Mapelli

Mass transfer

Two stars in a binary might exchange mass

- **1.** wind mass transfer
- 2. Roche lobe overflow
- 3. common envelope

Credits: ESO/L. Calçada/M. Kornmesser/S.E. de Mink

Wind mass transfer

Wind mass transfer

- * primary loses mass by stellar winds as $\,M_{1W}\,$
- * secondary acquires a part of it as (Bondi & Hoyle 1944)

$$\dot{M}_{2A} = -\frac{1}{\sqrt{1-e^2}} \left(\frac{G M_2}{v_W^2}\right)^2 \frac{\alpha_W}{2 a^2} \frac{1}{(1+v^2)^{3/2}} \dot{M}_{1W}$$

where

$$v^{2} = \frac{v_{\text{orb}}^{2}}{v_{W}^{2}} \qquad v_{\text{orb}}^{2} = \frac{G\left(M_{1} + M_{2}\right)}{a} \qquad v_{W}^{2} = 2\beta_{W}\frac{GM_{1}}{R_{1}}$$
$$\alpha_{W} \sim 1.5 \quad \beta_{W} \sim 0.125 - 7$$

* non-conservative mass transfer induces orbital angular momentum loss

$$L = \mu \sqrt{G \left(M_1 + M_2\right) a}$$

* mass transfer induces spin change (see tide discussion)

* VERY INEFFICIENT

Roche lobe overflow

Equipotential surfaces in a binary system

Roche lobe: minimum contact equip. surface (L1 Lagrangian point)

If a star fills its Roche lobe matter flows without energy change into the other star → MASS TRANSFER

$$\frac{r_1}{a} = \frac{0.49 \, q^{2/3}}{0.6 \, q^{2/3} + \ln\left(1 + q^{1/3}\right)}$$

where a = semi-major axis $q = M_1/M_2$

Eggleton 1983

Roche lobe overflow

Copyright © 2005 Pearson Prentice Hall, Inc.

Roche lobe overflow (un)stability

Important to decide on which timescale mass transfer is stable/unstable (Webbink 1985)

$$\zeta_{\rm ad} = \left(\frac{d\ln R}{d\ln M}\right)_{\rm ad} \,\zeta_{\rm th} =$$

$$= \left(\frac{d\ln R}{d\ln M}\right)_{\rm th}$$

Change of radius (due to mass loss of the donor) to adjust to new thermal equilibrium

$$\zeta_{\rm L} = \left(\frac{d\ln R_L}{d\ln M}\right)$$

Change of Roche lobe radius (due to mass loss of the donor)

Roche lobe overflow (un)stability

Important to decide on which timescale mass transfer is stable/unstable (Webbink 1985)

$$\zeta_{\rm ad} = \left(\frac{d\ln R}{d\ln M}\right)_{\rm ad}$$

$$\zeta_{\rm th} = \left(\frac{d\ln R}{d\ln M}\right)_{\rm th}$$

Change of radius (due to mass loss of the donor) to adjust to new thermal equilibrium

$$\zeta_{\rm L} = \left(\frac{d\ln R_L}{d\ln M}\right)$$

Change of Roche lobe radius (due to mass loss of the donor)

1. If
$$\,\zeta_{
m L}>\zeta_{
m ad}$$

mass transfer dynamically unstable i.e. UNSTABLE on a DYNAMICAL TIMESCALE No equilibrium is possible → **COMMON ENVELOPE**

- ^{2. If} $\zeta_{\rm ad} > \zeta_{\rm L} > \zeta_{\rm th}$
- ^{3. If} $\zeta_{\rm ad} > \zeta_{\rm th} > \zeta_{\rm L}$

mass transfer thermally unstable i.e. unstable on a Kelvin-Helmholtz timescale

mass transfer evolves on the evolution time of the star i.e. nuclear reactions must change the radius of the star to change the mass transfer conditions

Hurley et al. 2002

Roche lobe overflow (un)stability

How much mass is transferred from the DONOR?

3. If $\zeta_{ad} > \zeta_{th} > \zeta_{L}$ mass transfer evolves on the evolution time of the star $dM = 3 \times 10^{-6} M_{\odot} (M/M_{\odot})^{2} (\ln R/R_{L})^{3}$ 2. If $\zeta_{ad} > \zeta_{L} > \zeta_{th}$ mass transfer thermally unstable dM minimum between

 $dM = 3 imes 10^{-6} M_{\odot} \, (M/M_{\odot})^2 \, (\ln R/R_L)^3$ and $dM = \left(M \left/ au_{
m KH}
ight) dt$

How much mass is accreted by the ACCRETOR?

CONSERVATIVE: all transferred mass is accreted

NON CONSERVATIVE: accretion is limited by response of secondary

$$dM_2 = \min\left(\xi \, \frac{M_2}{dM} \, \frac{dt}{\tau_{\rm KH2}}, 1\right) dM$$

Hurley et al. 2002

Michela Mapelli

Orbital changes induced by Roche lobe overflow

1. CONSERVATIVE

$$L = \mu \sqrt{G\left(M_1 + M_2\right)a}$$

Ang. Mom. is conserved

If M_donor > M_accretor orbital separation decreases If M_accretor > M_donor orbital separation increases

Orbital changes induced by Roche lobe overflow

1. NON CONSERVATIVE: mass is lost from the system

$$L = \mu \sqrt{G\left(M_1 + M_2\right)a}$$

Ang. Mom. diminishes

Orbital separation should diminish too but details depend on donor/accretor mass

$$\frac{\langle \Delta a \rangle}{a} = -\frac{\Delta M_1}{M_1 + M_2} - \left(\frac{2 - e^2}{M_2} + \frac{1 + e^2}{M_1 + M_2}\right) \frac{\langle \Delta M_2 \rangle}{1 - e^2}$$
$$\frac{\langle \Delta e \rangle}{e} = -\langle \Delta M_2 \rangle \left(\frac{1}{M_1 + M_2} + \frac{1}{2M_2}\right)$$
$$\frac{\langle \Delta L \rangle}{L} = \frac{\Delta M_1 M_2 - \langle \Delta M_2 \rangle M_1}{M_1 (M_1 + M_2)}$$

Hurley et al. 2002

Gravitational wave (GW) progenitors

Michela Mapelli

Wind accretion versus Roche lobe overflow

If mass transfer becomes unstable (e.g. both stars fill Roche lobe), COMMON ENVELOPE (CE) phase = Two stars, one envelope

Probably the least understood process in binary evolution Four STAGES (with different physics):

1. loss of COROTATION: instable mass transfer prevents the envelope to co-rotate with the core NOT YET MODELLED SELF-CONSISTENTLY (Ivanova et al. 2013)

Probably the least understood process in binary evolution

Four STAGES (with different physics):

1. loss of COROTATION: instable mass transfer prevents the envelope to co-rotate with the core NOT YET MODELLED SELF-CONSISTENTLY (Ivanova et al. 2013)

 fast SPIRAL IN: two cores spiral in – they lose kinetic energy by drag with the gas and heat the gaseous envelope – on dynamical time scale (~100d) – SIMULATED IN 3D (Ricker & Taam 2008, 2012; Passy et al. 2012; Ohlmann+ 2016) Gravitational wave (GW) progenitors

Michela Mapelli

From Ohlmann et al. 2016, ApJ, 816, L9

Probably the least understood process in binary evolution

Four STAGES (with different physics):

1. loss of COROTATION: instable mass transfer prevents the envelope to co-rotate with the core NOT YET MODELLED SELF-CONSISTENTLY (Ivanova et al. 2013)

 fast SPIRAL IN: two cores spiral in – they lose kinetic energy by drag with the gas and heat the gaseous envelope – on dynamical time scale (~100d) – SIMULATED IN 3D (Ricker & Taam 2008, 2012; Passy et al. 2012; Ohlmann+ 2016)

3. slow SPIRAL IN: when two cores are close spiral-in slows down before envelope is ejected – Kelvin-Helmoltz timescale of envelope (~10^3-5 yr) POORLY UNDERSTOOD!!! WHAT REMOVES THE ENVELOPE?

Probably the least understood process in binary evolution

Four STAGES (with different physics):

1. loss of COROTATION: instable mass transfer prevents the envelope to co-rotate with the core NOT YET MODELLED SELF-CONSISTENTLY (Ivanova et al. 2013)

 fast SPIRAL IN: two cores spiral in – they lose kinetic energy by drag with the gas and heat the gaseous envelope – on dynamical time scale (~100d) – SIMULATED IN 3D (Ricker & Taam 2008, 2012; Passy et al. 2012; Ohlmann+ 2016)

3. slow SPIRAL IN: when two cores are close spiral-in slows down before envelope is ejected – Kelvin-Helmoltz timescale of envelope (~10^3-5 yr) POORLY UNDERSTOOD!!! WHAT REMOVES THE ENVELOPE?

4. MERGER of the cores or EJECTION of ENVELOPE

SEE IVANOVA ET AL. 2013, A&ARv, 21, 59 for a review

Most used analytic formalism ($\alpha\lambda$, Webbink 1984) does not capture physics. In its version by Hurley+ (2002, MNRAS, 329, 897) the $\alpha\lambda$ formalism is:

1. initial binding energy of envelope (λ = free parameter, geometrical factor)

$$E_{\text{bind,i}} = -\frac{G}{\lambda} \left(\frac{M_1 M_{\text{env,1}}}{r_1} + \frac{M_2 M_{\text{env,2}}}{r_2} \right)$$

2. orbital energy of the cores

$$E_{\rm orb} = -\frac{1}{2} \, \frac{G \, M_{\rm c,1} \, M_{\rm c,2}}{a}$$

3. change of orbital energy needed to unbind the envelope:

$$E_{\rm bind,i} = \Delta E_{\rm orb} = \alpha E_{\rm orb,f} - E_{\rm orb,i}$$

 α is second free parameter (energy removal efficiency)

4. if
$$a_{
m f} < (r_{
m c,1}+r_{
m c,2})$$

or $r_{\mathrm{c,i}} < r_{\mathrm{L,i}}$

i.e. any of the two cores fills Roche lobe before envelope ejection THEN the cores merge (Hurley+ 2002, MNRAS, 329, 897)

PROBLEM IS: HOW TO CONSTRAIN α and λ ?

Observations of WD binaries, NS binaries, SNIa, now gravitational wave events,

WHY is important for BH demography?

updated version of BSE (MM+ submitted, Giacobbo+ in prep.)

Michela Mapelli

Common Envelope

observed post-CE systems

e.g. Cat's eye nebula

Gravitational wave (GW) progenitors

Michela Mapelli

THANK YOU