# **Supernova or direct collapse?** Supernova explosions and black hole mass

Innsbruck, November 21 2017

## **Core-collapse supernovae**



When Fe core forms in a massive (> 8 Msun) star

- Fe-group atoms (Ni-62, Fe-58, Fe-56) have maximum binding energy: no more energy released by fusion
   ⇒ stellar core starts collapsing because pressure drops
  - $\rightarrow$  stellar core starts collapsing because pressure drops
- 2) electron degeneracy pressure tries to stop collapse but if core mass > Chandrasekhar mass (~1.4 Msun) electron + proton capture removes electrons <u>→ electron pressure decreases</u>



- → COLLAPSE to NUCLEAR DENSITY, where <u>neutron degeneracy pressure</u> stops collapse
- $\rightarrow$  **PROTO-NEUTRON STAR FORMS**

Fraction of binding energy of core (Eb,c ~10<sup>53</sup> erg)  $W \sim 5 \times 10^{53} \operatorname{erg} \left(\frac{M_{\rm PNS}}{1.4 \, M_{\odot}}\right)^2 \, \left(\frac{10 \, \mathrm{km}}{R_{\rm PNS}}\right)$ 

used to launch a SHOCK : = supernova explosion

**MECHANISM** that converts binding energy into shock is UNKNOWN



## STANDARD MODEL: CONVECTIVE ENGINE

Potential energy is converted into thermal energy (mostly thermal energy of neutrinos) and core bounces driving shocks

## SHOCK MUST REVERSE COLLAPSE OF OUTER LAYERS

But density must be sufficiently high that neutrinos interact, otherwise neutrinos leak away without transferring energy → SHOCK MIGHT STALL

 $\rightarrow$  SN FAILS

### WHEN DOES THE SHOCK STALL and the SN FAILS? Convective region below shock where neutrino transfer is

enhanced by convection

Fryer 2014, http://pos.sissa.it/archive/conferences/237/004/FRAPWS2014\_004.pdf



## How to study a core-collapse supernova (SN)?

### HYDRODYNAMICAL SIMULATIONS

<u>**!!CAVEAT: only stars with mass 8 – 11 Msun explode easily!!</u></u>** 

**1D:** large statistics (hundreds of models), approximate neutrino transfer (often kinetic bombs or thermal bombs to artificially induce explosion even in more massive stars)

(O'Connor & Ott 2011; Ugliano et al. 2012; Ertl et al. 2016)

**2D:** explode easily but might contain wrong physics (Marek & Janka 2009; Mueller et al. 2012a, 2012b)

**3D:** computationally expensive, explode slowly (Ott et al. 2005; Bondin & Mezzacappa 2007; Couch 2013; Couch & O'Connor 2014)

## How to study a core-collapse supernova (SN)?

## **HYDRODYNAMICAL SIMULATIONS (Couch & O'Connor 2014)**



400 km

400 km

## Supernova shock stops if BOUND MASS is too LARGE (Fryer 1999; Fryer & Kalogera 2001)

Back-of-the-envelope calculation to connect direct collapse and pre-supernova mass:

$$E_{\rm SN} = \frac{G M_{\rm env} \left(M_{\rm env} + M_{\rm core}\right)}{R_{\rm env}} \sim 1 \,\rm Msur$$
Star cannot explode if  
envelope binding energy  
> SN energy
$$M_{\rm env} \sim 50 \,M_{\odot} \left(\frac{E_{\rm SN}}{10^{51} \rm erg}\right)^{1/2} \left(\frac{R_{\rm env}}{10 \,R_{\odot}}\right)^{1/2}$$

If M<sub>fin</sub>>50 Msun this SN fails and star collapses to a BH!

## **CRITERIA FOR COLLAPSE TO A REMNANT**

depends on the "compactness" of the inner layers of the star

1. MASS OF CARBON-OXYGEN CORE If Mco > 7 – 8 Msun SN FAILS (Fryer+ 1999, 2012; Belczynski+ 2010)

**2. COMPACTNESS** 

**3. TWO-PARAMETER CRITERION** 

**2. COMPACTNESS (= ratio between mass and radius) of a given portion of the stellar core at the onset of collapse** 

(O'Connor & Ott 2011, Ugliano et al. 2012)



## **2. COMPACTNESS**





3. enclosed mass (M<sub>4</sub>) and mass gradient ( $\mu_4$ ) at a dimensionless entropy per nucleon s = 4

$$M_4 = m(s=4)/M_{\odot}$$
  $\mu_4 = \left[\frac{dm/M_{\odot}}{dr/1000 \,\mathrm{km}}\right]_{s=4}$ 



Ertl et al. 2016

# 3. enclosed mass (M<sub>4</sub>) and mass gradient ( $\mu_4$ ) at a dimensionless entropy per nucleon s = 4



## **ISLANDS OF DIRECT COLLAPSE AND SN EXPLOSION**

Concluding remark: MANY MODELS of SN EXPLOSION – REMNANT MASS CONNECTION BUT IF THE STAR IS VERY MASSIVE (>40 Mo) THEY GIVE SIMILAR RESULT

## SN outcome depends on the "rapidity" of the explosion (e.g. Fryer+ 2012; Fryer 2014)



From Fryer 2014, http://pos.sissa.it/archive/conferences/237/004/FRAPWS2014\_004.pdf

SN outcome depends on the "fallback" of the outer layers: How much material falls back to the proto-NS after the SN Barely constrained – depends on explosion energy, angular momentum, progenitor's mass/metallicity



## PAIR-INSTABILITY SUPERNOVAE

```
If star is very massive
(=produces γ–ray radiation in core)
γ-ray photons scattering atomic nuclei
produce electron-positron pairs (1 Mev)
```

The missing pressure of γ-ray photons produces dramatic collapse during O burning, without Fe core

- → high-Temperature collapse ignites all remaining species
- $\rightarrow$  an explosion is induced that leaves NO remnant

**!! Strongly depends on progenitor mass/metallicity and neutrino physics (eg Belczynski+ 2016)** 



## PAIR-INSTABILITY SUPERNOVAE

If star is very massive (=produces  $\gamma$ -ray radiation in core)  $\gamma$ -ray photons scattering atomic nuclei produce electron-positron pairs (1 Me

The missing pressure of  $\gamma$ -ray photons produces dramatic collapse during O burning, without Fe core

- → high-Temperature collapse ignites a
- $\rightarrow$  an explosion is induced that leaves

**!!** Strongly depends on progenitor mas neutrino physics (eg Belczynski+ 201



explodes. No compact remnant

is formed.

creating a shock wave that moves outward and blows the star apart. The core forms a neutron star or a black hole.

## **ELECTRON-CAPTURE SUPERNOVAE**

Collapse of ONe core triggered by electron capture in 5 – 10 Msun stars

\* stars which should produce white dwarfs

\* if > 1.4 Msun ONe core is developed, electron capture is efficient onto Mg and Ne

\* removes pressure leading to core collapse (Nomoto 1984; Jones+ 2016)

\* thought to happen mostly in binaries

\* smaller NS masses (~1.2 Msun)

\* lower kicks (van den Heuvel 2007; Beniamini & Piran 2016)



# The formation of compact remnants: wrap up

Very complicated. However, as rule of thumb (MM+ 2009, 2013):



#### Gravitational wave (GW) progenitors

#### Michela Mapelli



Heger et al. (2003)

Gravitational wave (GW) progenitors



My cartoon from Heger et al. (2003)

### What about intermediate metallicities between 0 and solar? - more difficult because stellar winds are uncertain

| Remnant<br>Model                                                | Stellar<br>Evolution                                                      | Supernova<br>Model                                                                   | Max. BH mass<br>at Z~0.01 Zsun |
|-----------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------|
| MM+ 2009                                                        | Maeder+ 1992                                                              | Fryer+ 1999                                                                          | ~50 Msun                       |
| MM+ 2010                                                        | Portinari+ 1998                                                           | Fryer+ 1999                                                                          | ~80 Msun                       |
| Belczynski+ 2010                                                | Hurley+ 2000<br>and Vink+ 2001                                            | Fryer+ 1999                                                                          | ~80 Msun                       |
| Fryer+ 2012                                                     | Hurley+ 2000<br>and Vink+ 2001                                            | Fryer+ 2012                                                                          | ~80 Msun                       |
| MM+ 2013,2014                                                   | SeBa (Portegies Z<br>and Vink+ 2001                                       | wart+ 2001)                                                                          | ~85 Msun                       |
| Spera, MM &<br>Bressan 2015;<br>Spera,<br>Giacobbo &<br>MM 2016 | PARSEC<br>(Bressan+ 2012;<br>Tang, Bressan+ 2014;<br>Chen, Bressan+ 2015) | O'Connor+2011<br>Fryer+ 2012<br>Ertl+ 2015<br>(6 different SN<br>models<br>compared) | ~130 Msun                      |

## What about intermediate metallicities between 0 and solar?

- more difficult because stellar winds are uncertain
- importance of final mass: pre-supernova mass of the star (when CO core built)



Spera, MM, Bressan 2015

# Remnant mass follows same trend as final mass $\rightarrow$ stellar winds are crucial



Spera, MM, Bressan 2015

Importance of supernova model for "LOW" STAR MASSES (<40 Mo)



## Importance of supernova model for "LOW" STAR MASSES (<40 Mo)



Spera, MM, Bressan 2015

## Importance of supernova model for LOW STAR MASSES (<40 M<sub>o</sub>)



Spera, MM, Bressan 2015

## Evolution of very massive stars still uncertain

## → stellar winds are Eddington-limited rather than metallicity dependent

![](_page_28_Figure_4.jpeg)

Spera & MM 2017

# Role of pulsational pair-instability and pair-instability supernovae (still missing in most models)

![](_page_29_Figure_3.jpeg)

Spera & MM 2017

## <u>Supernova kicks and compact-object binaries:</u>

A massive-star binary can become a compact-object binary only if it is not unbound by SN kicks

SN kicks for NSs constrained from velocity of PULSARS

Hobbs+ (2005): sample of 233 pulsars with proper motion measurements

A pulsar is currently at the position indicated by a circle

The track is its motion for the last 1 Myr assuming no radial velocity.

![](_page_30_Figure_8.jpeg)

## Supernova kicks and compact-object binaries:

Hobbs+ (2005): 3-D velocity distribution of pulsars obtained from the observed 2-D distributions of pulsars

 $\rightarrow$  Maxwellian distribution with sigma ~ 265 km/s

![](_page_31_Figure_5.jpeg)

## Supernova kicks and compact-object binaries:

**Beniamini & Piran 2016:** Estimate kick of double neutron stars only Maximum likely-hood of ejected mass and kick from conservation of energy and angular momentum

![](_page_32_Figure_4.jpeg)

## Supernova kicks and black hole binaries:

## WHAT ABOUT black holes?

No reliable methods to measure. Then people assume

**1.** conservation of linear momentum

$$v_{\rm kick, BH} = \frac{m_{\rm NS}}{m_{\rm BH}} v_{\rm kick, NS}$$

2. BHs formed without SN (failed or direct collapse) get NO KICK + kick modulated by FALLBACK

$$v_{\text{kick, BH}} = (1 - f_{\text{fb}}) v_{\text{kick, NS}}$$

**Gravitational wave (GW) progenitors** 

Michela Mapelli

# **THANK YOU**