

Michela Mapelli

N-body techniques for
astrophysics:

Lecture 2 – DIRECT N-BODY codes

PhD School in Astrophysics,
University of Padova
November 3-12, 2015

OUTLINE of LECTURE 2:

BASIC NOTIONS:

1. WHAT? DEFINITION of DIRECT N-BODY

2. WHY/WHEN DO WE NEED DIRECT N-BODY CODES?

3. HOW ARE DIRECT N-BODY CODES IMPLEMENTED?
3.1 EXAMPLE OF INTEGRATOR: Hermite 4th order
3.2 EXAMPLE OF TIME STEP CHOICE: block time step
3.3 EXAMPLE of REGULARIZATION: KS

4. WHERE? HARDWARE: 4.1 GRAPE → 4.2 GPU

EXTRA:

5. MPI?

6. coupling with more physics: stellar evolution

7. EXAMPLES

1. DEFINITION
- ONLY force that matters is GRAVITY

- Newton's EQUATIONS of MOTION:

 DIRECT N-Body codes calculate all N2 inter-particle forces
 → SCALE as O(N2)

N-body codes that use different techniques
(e.g. MULTIPOLE EXPANSION of FORCES for sufficiently distant particles)
induce LARGER ERRORS on ENERGY BUT scale as O(N logN)
– see NEXT LECTURE

→ Why do we use expensive direct N-body codes that scale as O(N2)
if we can do similar things with O(N logN) codes?

2. WHY/WHEN do we use direct N-body codes?

We DO NOT NEED direct N-body codes for COLLISIONLESS systems:
astrophysical systems where the stellar density is low
→ gravitational interactions between stars are weak and rare, and do not
 affect the evolution of the system

Interaction
Rate
scales as

density / vel^3

2. WHY/WHEN do we use direct N-body codes?

We DO NOT NEED direct N-body codes for COLLISIONLESS systems:
astrophysical systems where the stellar density is low
→ gravitational interactions between stars are weak and rare, and do not
 affect the evolution of the system

The collisionless systems evolve SMOOTHLY in time
→ they can be treated as a FLUID in the phase space

e.g. GALAXIES are COLLISIONLESS SYSTEMS

2. WHY/WHEN do we use direct N-body codes?
We NEED DIRECT N-BODY CODES for the COLLISIONAL SYSTEMS:
SYSTEMS WHERE the stellar DENSITY is so high that single gravitational
interactions between particles are frequent, strong and affect the overall
evolution of system (concept of GRANULARITY)

Interaction
Rate
scales as

density / vel^3

2. WHY/WHEN do we use direct N-body codes?
We NEED DIRECT N-BODY CODES for the COLLISIONAL SYSTEMS:
SYSTEMS WHERE the stellar DENSITY is so high that single gravitational
interactions between particles are frequent, strong and affect the overall
evolution of system (concept of GRANULARITY)

So that we need to resolve each single star and each interaction it
undergoes → We cannot use approximations!!!

 THE DENSEST STELLAR SYSTEMS: STAR CLUSTERS and GALACTIC NUCLEI

2. WHY/WHEN do we use direct N-body codes?
MAP of the DENSEST PLACES in the Universe

From M. B. Davies 2002

2. WHY/WHEN do we use direct N-body codes?
An important ingredient of COLLISIONAL SYSTEMS are BINARY STARS and

3-BODY ENCOUNTERS := KEPLER BINARIES INTERACT CLOSELY WITH
SINGLE STARS AND EXCHANGE ENERGY WITH THEM

 * Similar to scattering experiments in
(sub)atomic physics

 but involving stars/binary stars
 and ONLY GRAVITATIONAL FORCE

 * It is a very important process,
 because it dominates the energy
 budget of collisional systems

2. WHY/WHEN do we use direct N-body codes?
EXAMPLES of 3-BODY ENCOUNTERS

FLYBY: ORBITS CHANGE

2. WHY/WHEN do we use direct N-body codes?
EXAMPLES of 3-BODY ENCOUNTERS

IONIZATION: binary is destroyed (analogy with atoms)

2. WHY/WHEN do we use direct N-body codes?
EXAMPLES of 3-BODY ENCOUNTERS

EXCHANGE: binary member is replaced by single star

2. WHY/WHEN do we use direct N-body codes?

→ TO INTEGRATE CLOSE 3-BODY ENCOUNTERS CORRECTLY IS ONE OF
THE MOST CHALLENGING TASKS of DIRECT N-BODY CODES:
IT REQUIRES

i) VERY SMALL TIMESTEPS (~ a FEW YEARS) AND
ii) HIGH-ORDER INTEGRATION SCHEMES

TO CONSERVE ENERGY and ANG. MOMENTUM DURING THE 3-BODY!

3. HOW are direct N-body codes implemented?

3.1 INTEGRATION SCHEME

If interactions (and especially close interactions) between stars
are important
→ integrator must be HIGH ACCURACY even over SHORT TIMES

(integrate perturbations in < 1 orbit)
 → AT LEAST FOURTH-ORDER ACCURACY

4th ORDER PREDICTOR-CORRECTOR HERMITE SCHEME

Based on JERK (time derivative of acceleration)

3. HOW are direct N-body codes implemented?

3.1 INTEGRATION SCHEME

4th ORDER PREDICTOR-CORRECTOR HERMITE SCHEME

Based on JERK (time derivative of acceleration)

BETTER ADD A SOFTENING
(often is the PHYSICAL RADIUS OF STARS)

Let us start from 4th order derivative of Taylor expansion:

We use equations (3) and (4) to eliminate the 1st and 2nd derivative of jerk
in equations (1) and (2). We obtain

WHICH ARE 4th order accuracy:
ALL TERMS in dj/dt (snap) and d2j/dt2 (crackle) disappear: it is 4th order
accuracy with only 2nd order terms!!!

But IMPLICIT for a1, v1 and j1 → we need something to predict them

(5)

(6)

3.1 INTEGRATION SCHEME

 DOUBLE TRICK!

1) PREDICTION: we use the 3rd order Taylor expansion to PREDICT x1 and v1

2) FORCE EVALUATION:
we use these PREDICTIONS to evaluate PREDICTED
acceleration and jerk (ap,1 and jp,1), from Newton's formula.

3) CORRECTION:
 we then substitute ap,1 and jp,1 into equations (5) and (6):

 This result is only 3rd order in positions! But there is a dirty trick to
 make it 4th order: we calculate v1 first and then use the result into x1

3.1 INTEGRATION SCHEME

3. HOW are direct N-body codes implemented?

3.2 TIME STEP

We can always choose the SAME TIMESTEP for all PARTICLES

 BUT: highly expensive because a few particles undergo close
encounters → force changes much more rapidly than for other particles

→ we want different timesteps:
longer for 'unperturbed' particles
shorter for particles that undergo close encounter

A frequently used choice:

BLOCK TIME STEPS (Aarseth 1985)

 IDEAL CHOICE of TIMESTEP

1. Initial time-step calculated as
for a particle i
η = 0.01 – 0.02 is good choice

2. system time is set as t := ti + min (∆ti)

All particles with time-step = min (∆ti) are called
ACTIVE PARTICLES
At time t the predictor-corrector is done only for active particles

3. Positions and velocities are PREDICTED for ALL PARTICLES

4. Acceleration and jerk are calculated ONLY for ACTIVE PARTICLES

5. Positions and velocities are CORRECTED ONLY for active particles
(for the other particles predicted values are fine)

 After force calculation, new timesteps evaluated as 1. and everything
is repeated

BUT a different ti for each particles is VERY EXPENSIVE and system
loses coherence

3.2 TIME STEP:

A different ∆ti for each particles is VERY
EXPENSIVE and the system loses coherence

→ BLOCK TIME STEP SCHEME consists in grouping particles by
replacing their individual time steps ∆ti with a

BLOCK TIME STEP ∆ti,b = (1/2)n

where n is chosen according to

This imposes that t/∆ti,b be an integer → good for synchronizing the

particles at some time

 Often it is set a minimum ∆tmin = 2^-23

3.2 TIME STEP:

NOTES on Hermite and time steps:

 * MOST CODES USE slightly more accurate equations for the CORRECTOR:

 where

 see eg. phiGRAPE (Harfst et al. 2007), STARLAB (Portegies Zwart et al. 2001)

 * Then, the choice of time steps is done with the formula (Aarseth 1985):

 where η = 0.01 – 0.02 is good choice

NOTE: definition of η for some codes (eg STARLAB) is different
ηSTARLAB=sqrt(η) → ηSTARLAB= 0.1 is good choice (Anders+2012)

*Some codes even use the 6th order Hermite scheme
eg. HiGPUs code, http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html

Capuzzo Dolcetta, Spera & Punzo, 2013, Journal of Computational Physics, 236, 580

3.3 REGULARIZATION

Definition:

mathematical trick to remove the singularity
in the Newtonian law of gravitation for two particles
which approach each other arbitrarily close.

Is the same as softening????

NO, it is a CHANGE OF VARIABLES,
that removes singularity without affecting the physics

Most used regularizations in direct N-body codes:

-Kustaanheimo-Stiefel (KS) regularisation
a regularization for binaries and 3-body encounters

-Aarseth / Mikkola CHAIN regularization
a regularization for small N-body problems

3. HOW are direct N-body codes implemented?

3.3 REGULARIZATION

Regularisation for binaries and 3-body encounters:

Kustaanheimo-Stiefel (KS) regularisation

 Levi-Civita (1956): regularize Kepler orbit of a binary in 2 dimensions

KS (1965): extension to 3 dimensions of Levi-Civita regularization
see Funato et al. (1996, astro-ph/9604025) for improvement
see Waldvogel lecture at Scottish University Summer School in Physics (2007)

BASIC IDEAS:

*Change from coordinates to offset coordinates: CM and relative particle

* a Kepler orbit is transformed into a harmonic oscillator and the number
of steps needed for the integration of an orbit is reduced significantly
& round-off errors reduce too

www.sam.math.ethz.ch/~joergw/Papers/scotpaper.pdf

3.3 REGULARIZATION
Regularisation for binaries and 3-body encounters:

Kustaanheimo-Stiefel (KS) regularisation
AKA PERTURBED KEPLER PROBLEM

Let us consider a Kepler binary (eg Sun+planet)
M1 = Sun mass
M2 = planet mass

Total mass:
Mtot = M1+M2

Reduced mass:
µ = M1 M2/(M1+M2)

equation of Kepler
motion for reduced
Mass:

3.3 REGULARIZATION
Regularisation for binaries and 3-body encounters:

Kustaanheimo-Stiefel (KS) regularisation
AKA PERTURBED KEPLER PROBLEM

 CALCULATIONS (for Levi-Civita in 2D – KS is the same in 3D):

1- equation of Kepler
motion for reduced
mass

2- total energy of binary:

semi-major
axis

reduced mass

Binding
energy

3.3 REGULARIZATION

 CALCULATIONS (for Levi-Civita in 2D – KS is the same in 3D):

3- change time coordinate (for infinitesimally small steps):

WHERE

THEN

4- represent the physical coordinates r as the square u2 of a complex variable

u = u1 + i u2

3.3 REGULARIZATION

CALCULATIONS (for Levi-Civita in 2D – KS is the same in 3D):

5- substituting 3 and 4 in 1 (Kepler equation) and 2 (binary energy),
and using properties of complex numbers:

1 becomes

2 becomes

(*)

(**)

EQUATION OF HARMONIC
 OSCILLATOR
 (NO SINGULARITY)!

BUT

CASE of UNPERTURBED BINARY:
ENERGY DOES NOT CHANGE

3.3 REGULARIZATION

CALCULATIONS (for Levi-Civita in 2D – KS is the same in 3D):

6- The Kepler equation becomes:

CASE of PERTURBED BINARY:
3-BODY ENCOUNTER

3.3 REGULARIZATION

 Regularisation for multi-body systems:

CHAIN regularisation by Aarseth

(e.g. Mikkola & Aarseth 1993, Celestial Mechanics and Dynamical Astronomy, 57, 439)

USEFUL for PLANETARY SYSTEMS and for the surrounding of
SUPER-MASSIVE BLACK HOLES (where multiple interactions with a dominant
body are frequent)

BASIC IDEAS:

- calculate distances between an active object
(e.g. binary) and the closest neighbours

- find vectors that minimize the distances

- use these vectors (“chain coordinates”)
 to change coordinates and make

SUITABLE CHANGE OF TIME
COORDINATE

- calculate forces with new coordinates

1

5

4
3

2

6
7

3.3 REGULARIZATION

 Regularisation for multi-body systems:

CHAIN regularisation by Aarseth

(e.g. Mikkola & Aarseth 1993, Celestial Mechanics and Dynamical Astronomy, 57, 439)

USEFUL for PLANETARY SYSTEMS and for the surrounding of
SUPER-MASSIVE BLACK HOLES (where multiple interactions with a dominant
body are frequent)

BASIC IDEAS:

- calculate distances between an active object
(e.g. binary) and the closest neighbours

- find vectors that minimize the distances

- use these vectors (“chain coordinates”)
 to change coordinates and make

SUITABLE CHANGE OF TIME
COORDINATE

- calculate forces with new coordinates

1

5

4
3

2

6
7

SEE LAST LECTURE BY MARIO SPERA

 4. WHERE? THE HARDWARE – from GRAPE to GPUs

 4.1 GRAPE (see http://www.ids.ias.edu/~piet/act/comp/hardware/index.html)

GRAvity PipE: a hardware implementation of Newtonian pair-wise force
calculations between particles in a self-gravitating N-body system

HIGHLY SPECIALIZED HARDWARE, FASTER than LIBRARY CALL TO
GRAVITY CALCULATION ROUTINE

SORT of GRAVITY
ACCELERATOR

as a

GRAPHICS CARD is
a GRAPHICS
ACCELERATOR

– – – – – – – – – – – –

Predictor/corrector
on PC

Acceleration and
jerk calculation on
GRAPE

http://www.ids.ias.edu/~piet/act/comp/hardware/index.html

 4.1 GRAPE (see http://www.ids.ias.edu/~piet/act/comp/hardware/index.html)

History:

1989: GRAPE project starts at Tokyo university (Daiichiro Sugimoto and then
Junichiro Makino)

 GRAPE-1 at 240 Mflops at single precision

1990: GRAPE-2 at 40 Mflops at double pr.

1991: GRAPE-3 at 15 Gflops at single pr.

 (first one with specialized gravity chips
 rather than commercial chips)

1995: GRAPE-4 at double pr.
 4-cabinet GRAPE-4 computer reaches 1Tflop
 !!! 1st computer who reached 1Tflop !!!

2001: GRAPE-6 at double pr.

A single GRAPE-6 boards runs at 1 Tflop
 A 4-cabinet (with 8 GRAPE-6 boards each)
 at 32 Tflop

 GRAPE-8 was in project but.....

http://www.ids.ias.edu/~piet/act/comp/hardware/index.html

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

In 2004-2008, researchers found that GPUs are at least as fast as
GRAPES for direct N-body codes (Portegies Zwart et al. 2007; Belleman
et al. 2008; Gaburov et al. 2009)

GRAPE
GPU

CPU

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

Wikipedia's definition: specialized electronic circuit designed to rapidly manipulate
and alter memory to accelerate the creation of images in a frame buffer intended for
output to a display

Mostly graphics

accelerator of the

VIDEO CARD,

but in some PC

are in the

MOTHERBOARD

VIDEO CARDS
WITH GPUS

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

COMPONENTS of a VIDEO CARD

From http://www.tomshardware.com/reviews/graphics-beginners,1288.html
By Don Woligroski

OUTPUT to MONITOR
(VGA and DVI)

http://www.tomshardware.com/reviews/graphics-beginners,1288.html
http://www.tomshardware.com/contact.html

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

COMPONENTS of a VIDEO CARD

From http://www.tomshardware.com/reviews/graphics-beginners,1288.html
By Don Woligroski

INTERFACE TO CPU
accelerated graphics port (AGP)
PCI-express

http://www.tomshardware.com/reviews/graphics-beginners,1288.html
http://www.tomshardware.com/contact.html

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

COMPONENTS of a VIDEO CARD

From http://www.tomshardware.com/reviews/graphics-beginners,1288.html
By Don Woligroski

GPU processor (on top of fan)

http://www.tomshardware.com/reviews/graphics-beginners,1288.html
http://www.tomshardware.com/contact.html

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

COMPONENTS of a VIDEO CARD

From http://www.tomshardware.com/reviews/graphics-beginners,1288.html
By Don Woligroski

VIDEO

MEMORY

http://www.tomshardware.com/reviews/graphics-beginners,1288.html
http://www.tomshardware.com/contact.html

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

Wikipedia's definition: specialized electronic circuit designed to rapidly
manipulate and alter memory to accelerate the creation of images in a frame
buffer intended for output to a display

Mostly graphics accelerator of the VIDEO CARD, but in some PC are in the
MOTHERBOARD

Born for applications that need FAST and HEAVY GRAPHICS: VIDEO GAMES

BEFORE GPU AFTER GPU

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

In ~2004 GPUS WERE FOUND TO BE USEFUL FOR CALCULATIONS:

 - first N-body simulations (2nd order) by Nyland et al. (2004)

 - first GPU implementation of Hermite scheme by Portegies Zwart et al.
(2007)

 - molecular dynamics on GPU (Anderson et al. 2008; van Meel et al.
2008)

 - Kepler's equation (Ford 2009)

- many more N-body: Cunbody (Hamada & Iitaka 2007), kirin (Belleman et
al. 2008), Yebisu (Nitadori & Makino 2008; Nitadori 2009), Sapporo
(Gaburov et al. 2009, Bedorf et al. 2015)

WHY?

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

SIMPLE IDEA:

coloured pixel represented by 4 numbers (R, G, B and transparency)

each pixel does not need information about other pixels (near or far)

→ when an image must be changed each single pixel can be updated
INDEPENDENTLY of the others and SIMULTANEOUSLY to the others

→ GPUs are optimized to perform MANY SMALL OPERATIONS (change a
single pixel) SIMULTANEOUSLY i.e. MASSIVELY PARALLEL

THIS IS THE CONCEPT OF SIMD TECHNIQUE:

SINGLE INSTRUCTION MULTIPLE DATA

GPUS are composed of many small threads, each able to perform a small
instruction (kernel), which is the same for all threads but applied on different
data

→ NVIDIA calls it SIMT= single instruction multiple THREAD

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

SIMD/SIMT TECHNIQUE: SINGLE INSTRUCTION MULTIPLE DATA/THREADS

 many processing units perform the same series of operationsmany processing units perform the same series of operations

 on different sub-samples of dataon different sub-samples of data

Even current CPUs are multiple CORES (i.e. can be multi-threading)

but the number of independent cores in GPUs is ~100 times larger!

1M $ QUESTION: WHY IS THIS PARTICULARLY GOOD
FOR DIRECT N-BODY CODES?

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

SIMD TECHNIQUE: SINGLE INSTRUCTION MULTIPLE DATA

WHY IS THIS PARTICULARLY GOOD FOR DIRECT
N-BODY CODES?

BECAUSE THEY DO A SINGLE OPERATION

(acceleration and jerk calculation)

on MANY PAIRS of PARTICLES

EACH INTERPARTICLE FORCE BETWEEN A PAIR IS
INDEPENDENT OF THE OTHER PAIRS!!

SINGLE INSTRUCTION: ACCELERATION CALCULATION

MULTIPLE DATA: N (N-1)/2 ~ N2 FORCES

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

HOW ARE DIRECT N-BODY CODES ADAPTED TO GPUs?

1. inside the GPU

2. languages for GPU computing

3. application to the Hermite scheme

1. inside the GPU – Host := CPU, Device := GPU – EXAMPLE: Tesla C1060

 30 MPs
0 1 2 3 …. 26 27 28 29

30 multiprocessors (MPs)

+ 1 shared memory per MP
(16 KB low latency – register-speed -
data cache)

+ a single DEVICE MEMORY for the
entire GPU (several GB), slower than
shared memory (>100 cycles)

+ Device memory talks with host
memory through direct memory
access (DMA): even slower (direct
access to host memory?)

0
1
2
3
..

32 THREADS = 1 WARP

THREADS

8 CORES (stream processors)
0 1 2 3 4 5 6 7

shared
mem.

 DEVICE MEMORY
DMA

HOST MEMORY

HOST CPU

Thread execution
control unit

 30 MPs
0 1 2 3 …. 26 27 28 29

0
1
2
3
..

32 THREADS = 1 WARP

THREADS

8 CORES (stream processors)
0 1 2 3 4 5 6 7

shared
mem.

 DEVICE MEMORY
DMA

HOST MEMORY

HOST CPU

Thread execution
control unit

30 multiprocessors (MPs)

8 stream processors (cores) per MP

each core can execute a sequential thread

each GROUP of 32 threads connected
to the same MP is a WARP:
all threads in a warp execute the same
instruction on different data

→ a single instruction is completed in 4
clock cycles, for an entire WARP
 (i.e. each core executes 1 thread
 per cycle)

1. inside the GPU – Host := CPU, Device := GPU – EXAMPLE: Tesla C1060

 30 MPs
0 1 2 3 …. 26 27 28 29

0
1
2
3
..

32 THREADS = 1 WARP

THREADS

8 CORES (stream processors)
0 1 2 3 4 5 6 7

shared
mem.

 DEVICE MEMORY
DMA

HOST MEMORY

HOST CPU

Thread execution
control unit

each GROUP of 32 threads connected to
the same MP is a WARP

GROUPS of # WARPS that are executed
on the same MP (shared memory) are
called BLOCKS

of threads per block is always
multiple of # threads per warp

MAX BLOCK = 16 warps (512 threads)

Tesla has maximum of 1024 threads:
2 BLOCKS (512 threads per block)

 4 BLOCKS (256 threads per block)

1. inside the GPU – Host := CPU, Device := GPU – EXAMPLE: Tesla C1060

GPUs were born single precision. In some recent GPUs (eg
TESLA) each MP has a 'special function unit' to mimic double
precision → important for science calculation

1. inside the GPU – Host := CPU, Device := GPU – EXAMPLE: Tesla C1060

2. languages for GPU computing

- Cg = C for graphics computer language (Fernando & Kilgard 2003)
for use with open graphics library (Open GL)

eg the kirin (Belleman et al. 2008) N-body library is in Cg
https://developer.nvidia.com/cg-toolkit

- CUDA= Compute Unified Device Architecture (Fernando 2004)
for use with NVIDIA proprietary drivers

Also similar to C/C++

eg the Sapporo library for N-body (Gaburov et al. 2009)
https://developer.nvidia.com/get-started-cuda-cc

 Both Cg and CUDA are developed by NVIDIA

- Open CL = born 2009, for use with open graphics library (Open GL)
similar to C

OPEN SOURCE AND

NO LIMITS ON DEVICE (even intel phi)

Developed by Apple, AMD, Intel, IBM...

3. application to the Hermite scheme

EXAMPLE: Sapporo library for N-body
(Gaburov et al. 2009, http://arxiv.org/abs/0902.4463,
 Bedorf et al. 2015, http://arxiv.org/abs/1510.04068)

Public software – download:
http://home.strw.leidenuniv.nl/~spz/MODESTA/Software/src/sapporo.html

BASIC IDEA: allows a code that uses Hermite scheme optimized for GRAPE

 to run on multiple GPUS through CUDA architecture

e.g. works with

phiGRAPE (Harfst et al. 2007, New Astronomy, 12, 357)

http://www-astro.physik.tu-berlin.de/~harfst/index.php?id=phigrape

STARLAB (Portegies Zwart et al. 2001, MNRAS, 321, 199)

 http://www.sns.ias.edu/~starlab/

http://arxiv.org/abs/0902.4463
http://arxiv.org/abs/1510.04068
http://home.strw.leidenuniv.nl/~spz/MODESTA/Software/src/sapporo.html
http://www-astro.physik.tu-berlin.de/~harfst/index.php?id=phigrape
http://www.sns.ias.edu/~starlab/

3. application to the Hermite scheme: Sapporo library for N-body

 Let us repeat the basic concepts..

acceleration

jerk

 4th order Hermite predictor-corrector scheme is 3 step:

1. predictor step: predicts positions and velocities at 3rd order

2. calculation step: calculates acceleration and jerk for the
predicted positions and velocities

3. corrector step: corrects positions and velocities using the
acceleration and jerk calculated in 2

3. application to the Hermite scheme: Sapporo library for N-body

 IF BLOCK TIME STEP OR SIMILAR IS USED:

j- particles: sources of gravitational forces (those that exert the
force)

 Σj = n

i- particles: sinks of gravitational forces (those on which the force is
exerted)

 Σi = m

IMPORTANT:

m<=n because ONLY ACTIVE PARTICLES
ARE CORRECTED in the HERMITE
PREDICTOR-CORRECTOR !!!
 Even m<<n is possible

3. application to the Hermite scheme: Sapporo library for N-body

 Let us repeat the basic concepts..

acceleration

jerk

 IF BLOCK TIME STEP OR SIMILAR IS USED:

j- particles: sources of gravitational forces (those that exert the force) Σj = n

i- particles: sinks of gravitational forces (those on which the force is exerted) Σi = m
m<n because ONLY ACTIVE PARTICLES ARE CORRECTED

 4th order Hermite predictor-corrector scheme is 3 step:

1. predictor step: predicts positions and velocities of the
j-particles and i-particles at 3rd order

2. calculation step: calculates acceleration and jerk exerted by
j-particles on the i-particles, for the predicted positions and
velocities of the i-particles

3. corrector step: corrects positions and velocities of the
i-particles using the acceleration and jerk calculated in 2

3. application to the Hermite scheme: Sapporo library for N-body

 Implementation of Hermite scheme by Sapporo:

1. predictor step : j-particle predic. on GPU / i-particle predic. on CPU

 2. calculation step : ENTIRELY ON GPU

 3. corrector step : ENTIRELY ON CPU

WHY?

STEP 1 for the j scales as O(n) / for the i scales as O(m) with n>m

It is important that STEP 2 is on GPU because O(n . m)

While STEP 3 is O(m) : less heavy step!

j-particles predictor

3. application to the Hermite scheme: Sapporo library for N-body

STEP 1 (predictor of j and i):

On GPU

each j-particle is read by a single thread on the GPU
 position, velocity, acceleration, jerk and ∆t from time 0 are read from

global device memory to the local shared memory

Then prediction is done:

Comment: positions must be in double precision (DP). This was impossible
in old GPUs and is expensive in new GPUs.

Then in new GPUs only the position (and the sum to predict position) must
be in DP, while v, a and j are stored in single precision (SP). The DP in
GPUs is emulated by double single (DS) technique: a double is stored
as two single p. (containing the most significant digits and the least
significant ones).

The same for i-particles

On CPU

3. application to the Hermite scheme: Sapporo library for N-body

STEP 2 (calculation of acceleration and jerk onto i-particles):

On GPU
 Remember: Only threads on the same MP have the same shared memory

Threads executed by different MPs share only global memory
A block is a number of threads executed by the same MP

Parallelization:

 the calculation is split in P blocks,
 where P is the # of available MPs

 The j particles are distributed evenly
 among the P blocks (n/P per each block)

 The i particles are visible to all blocks
 (i.e. a copy of the i-particles is sent
 to all MPs)

 Each of the MPs computes the partial
 forces exerted by the n/P j-particles
 assigned to that MP, on all the i-particles
 in parallel.

3. application to the Hermite scheme: Sapporo library for N-body

STEP 2 (continues):

if the number of threads in a block is nthread>=m each i-particle is assigned to a
single thread of each block

 if nthread<m, the i-particles must be split in more segments

IN PRACTICE:

* Each thread in the same MP loads one of the i- particles from the global to the local
memory (so that the total numbers of particles in the shared memory is =nthread)

* Each thread SEQUENTIALLY calculates and sums the partial forces exerted by the
n/P j-particles stored in the block onto its associated i-particle

* The final step is to sum the partial forces exerted on each i-particle by each block of
n/P j-particles (very last step as DIFFERENT BLOCKs communicate only through
the slow GLOBAL memory)

* Sums are done in DS to emulate DP

3. application to the Hermite scheme: Sapporo library for N-body

STEP 3 (correction of x and v for the i-particles):

On CPU

The total acceleration and jerks calculated on GPU are then copied from
the global device memory to the host memory

In the host (=CPU) the positions and velocity of the active m particles (the i-particles)
 are corrected according to:

Then a new block time step ∆t is calculated..etcetc

3. application to the Hermite scheme: Sapporo library for N-body

This implementation of Hermite with Sapporo allows to reach the
performance I showed before:

NOTE: SAPPORO WORKS IN PARALLEL ON ALL THE GPU DEVICES CONNECTED
 TO THE SAME HOST thanks to the GPUWorker library, which is part of the
 HOOMD molecular dynamics GPU code (Anderson et al. 2008)

→ If each node has 2 or 4 GPUs, you can use all the 2 or 4 GPUs

GRAPE

GPU

CPU

3. application to the Hermite scheme: Sapporo library for N-body

This implementation of Hermite with Sapporo allows to reach the
performance I showed before:

YOU CAN RUN YOUR OWN TESTS @ HOME!

SIMPLE
PERFORMANCE
TEST

for a star cluster
with N particles

3. application to the Hermite scheme: Sapporo library for N-body

This implementation of Hermite with Sapporo allows to reach the
performance I showed before:

YOU CAN RUN YOUR OWN TESTS @ HOME!

Single Xeon
processor

VS Quadro GPU
(typical graphics
card of desktops)

VS Tesla GPU
GPU for computing:
more expensive (~2k
EUR) but can fit in
your workstation

VS 2 Kepler 20 on
the same node
mounted on
EURORA @ CINECA

~2 orders of
magnitude!

3. application to the Hermite scheme: Sapporo library for N-body

This implementation of Hermite with Sapporo allows to reach the
performance I showed before:

YOU CAN RUN YOUR OWN TESTS @ HOME!

Single Xeon
processor

VS Quadro GPU
(typical graphics
card of desktops)

VS Tesla GPU
GPU for computing:
more expensive (~2k
EUR) but can fit in
your workstation

VS 2 Kepler 20 on
the same node
mounted on
EURORA @ CINECA

GPU dominated by host-
device communication +
many threads are idle

massively parallel GPU
computing more
important than slow
communication

3. application to the Hermite scheme: Sapporo library for N-body

This implementation of Hermite with Sapporo allows to reach the
performance I showed before:

YOU CAN RUN YOUR OWN TESTS @ HOME!

Single Xeon
processor

VS Quadro GPU
(typical graphics
card of desktops)

VS Tesla GPU
GPU for computing:
more expensive (~2k
EUR) but can fit in
your workstation

VS 2 Kepler 20 on
the same node
mounted on
EURORA @ CINECA

Small performance
difference between
cheap (Quadro) and
expensive GPUs (Tesla,
K20)

But Tesla & K20 have
ECC (error correcting
code) memory and
double precision

FACILITIES with GPUs @ CINECA:

IBM PLX:

six-cores Intel Westmere 2.40 GHz
per node (548 processors, 3288
cores in total)

2 NVIDIA Tesla M2070 per node
(for 264 nodes) + 2 NVIDIA Tesla
M2070Q per node (for 10 nodes)
for a total of 548 GPUs

EURORA:

64 nodes

2 Xeon E5-2687W
3.10 GHz per node

2 NVIDIA K20 per
node (64 cards now)

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

FACILITIES with GPUs @ CINECA:

IBM PLX:

six-cores Intel Westmere 2.40 GHz
per node (548 processors, 3288
cores in total)

2 NVIDIA Tesla M2070 per node
(for 264 nodes) + 2 NVIDIA Tesla
M2070Q per node (for 10 nodes)
for a total of 548 GPUs

EURORA:

64 nodes

2 Xeon E5-2687W
3.10 GHz per node

2 NVIDIA K20 per
node (64 cards now)

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

FACILITIES with GPUs @ CINECA:

IBM GALILEO:

Model: IBM NeXtScale

Architecture: Linux Infiniband
Cluster

Nodes: 516

Processors: 2 8-cores Intel Haswell
2.40 GHz per node

Cores: 16 cores/node, 8256 cores
in total

Accelerators: 2 Intel Phi 7120p per
node on 384 nodes (768 in total); 2
NVIDIA K80 per node on 40 nodes
(80 in total, 20 available for
scientific research)

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

DIRECT
N-body

“collisionless”
FAMILY
(tree codes,
MESH,
AMR)

Moore's
Law for
advances
in computational
Astrophysics

(from Dehnen
& Read 2011,
arXiv:1105.1082)

 4.2 GRAPHICS PROCESSING UNITS (GPUs)

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

 Done with at least 2 algorithms:
- copy algorithm: all processors have the entire list of particles
- ring algorithm: particles are split between processors

 Definition: p = number of processors, n = number of particles,
m = number of active particle (sinks of gravity)

 Time complexity:
- O(n p) for communication
- O(n2/p) for calculation [or rather O(nm/p)]

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

COPY ALGORITHM or REPLICATED DATA ALGORITHM:
all p have the entire list of particles (id., pos. & vel.)

Step 1: each p receives a list of all the n particles (but will
calculate the ∆t of a subsample q of particles)
e.g. p = 4, n = 24 → q = 6

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

p0 p1 p2 p3

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

COPY ALGORITHM or REPLICATED DATA ALGORITHM:
all p have the entire list of particles (id., pos. & vel.)

Step 2: ∆t is calculated for the q particles → the particles with
shorter ∆t are ACTIVE and forces must be updated

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

p0 p1 p2 p3

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

COPY ALGORITHM or REPLICATED DATA ALGORITHM:
all p have the entire list of particles (id., pos. & vel.)

Step 3: each p calculates forces on the active particles in its list
 exerted by all the other particles

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

i=2 i=8, 10 i=17 i=19

calculates
forces by
n–1 particles
on

calculates
forces by
n–1 particles
on

calculates
forces by
n–1 particles
on

calculates
forces by
n–1 particles
on

p0 p1 p2 p3

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

COPY ALGORITHM or REPLICATED DATA ALGORITHM:
all p have the entire list of particles (id., pos. & vel.)

Step 4: the updated forces/positions/velocities for the active
particles are broadcasted to all p

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

 1 2 3 4 5 6

 7 8 9 10 11 12

 13 14 15 16 17 18

 19 20 21 22 23 24

p0 p1 p2 p3

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

RING ALGORITHM or SYSTOLIC ALGORITHM:
Each p has only a partial list of particles (q particles)
The processors p are connected in a ring topology

Step 0: each p receives a list of q particles and calculates ∆t to
find the active ones

e.g. p=4, n=24 → q=6

 1 2 3

 4 5 6

 7 8 9

 10 11 12

 13 14 15

 16 17 18

 19 20 21

 22 23 24

 p0

 p3 p1

 p2

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

RING ALGORITHM or SYSTOLIC ALGORITHM:
Each p has only a partial list of particles (q particles)
The processors p are connected in a ring topology

Step 1: each p calculates forces on ITS active particles

 1 2 3

 4 5 6

 7 8 9

 10 11 12

 13 14 15

 16 17 18

 19 20 21

 22 23 24

forces on 2

forces on 8, 10

forces on 17

forces on 19

 p0

 p3 p1

 p2

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

RING ALGORITHM or SYSTOLIC ALGORITHM:
Each p has only a partial list of particles (q particles)
The processors p are connected in a ring topology

Step 2: each p calculates forces on next p (clockwise)

 1 2 3

 4 5 6

 7 8 9

 10 11 12

 13 14 15

 16 17 18

 19 20 21

 22 23 24

forces on 19

forces on 2

forces on 8, 10

forces on 17

 p0

 p3 p1

 p2

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

RING ALGORITHM or SYSTOLIC ALGORITHM:
Each p has only a partial list of particles (q particles)
The processors p are connected in a ring topology

Step 3: each p calculates forces on bis-next p (clockwise)

 1 2 3

 4 5 6

 7 8 9

 10 11 12

 13 14 15

 16 17 18

 19 20 21

 22 23 24

forces on 17

forces on 19

forces on 2

forces on 8, 10

 p0

 p3 p1

 p2

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

RING ALGORITHM or SYSTOLIC ALGORITHM:
Each p has only a partial list of particles (q particles)
The processors p are connected in a ring topology

Step 4: each p calculates forces on bis-next p (clockwise)

 1 2 3

 4 5 6

 7 8 9

 10 11 12

 13 14 15

 16 17 18

 19 20 21

 22 23 24

forces on 8, 10

forces on 17

forces on 19

forces on 2

 p0

 p3 p1

 p2

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

RING ALGORITHM or SYSTOLIC ALGORITHM:
Each p has only a partial list of particles (q particles)
The processors p are connected in a ring topology

Step 4+1: communication of new positions/velocities and
calculation of new ∆t → the cycle restarts

 1 2 3

 4 5 6

 7 8 9

 10 11 12

 13 14 15

 16 17 18

 19 20 21

 22 23 24

forces on 2

forces on 8, 10

forces on 17

forces on 19

 p0

 p3 p1

 p2

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

RING vs COPY ALGORITHM?
Copy a. performs better if COMMUNICATION is SLOW and # of
particles small (<1e5)
Ring a. performs better if COMMUNICATION is FAST and # of
particles large

COMPARISON WITH Sapporo:
Parallelization on Sapporo is different:
-no copy because each p knows only n/p particles
-no systolic because the gravity sink particles are known to all

multiprocessors

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

PROBLEMS of MPI version:
difficult to treat BINARY SYSTEMS →
Binary/multiple systems continuously form/destroy during the
simulation
New binary systems must be in the same processor, because of
regularization → slow algorithms to change the distribution of
particles between processors (there is no real tree)
→ less efficient than GPUs

The SYSTOLIC ALGORITHM DOES NOT WORK, BECAUSE A
LIST OF ALL PARTICLES IN THE ENTIRE SYSTEM MUST BE
KNOWN BY ALL PROCESSORS,
OTHERWISE LIST OF PERTURBERS OF BINARIES
REMAINS INCOMPLETE!!!!
(Portegies Zwart et al. 2008 for this caveat)

With GPUs the list of perturbers is in the device memory!
(still bottleneck but not so serious)

5. MPI? WHAT ABOUT PARALLEL direct summation N-body codes
on CPU clusters?

PROBLEMS of MPI version:
Speed up without Speed up WITH

 primordial binaries (reasonable) primordial binaries (awful)

From Portegies Zwart et al. 2008

N=16384
Only change is PB
fraction

6. STELLAR EVOLUTION

 EACH PARTICLE IS A SINGLE STAR!

 In simulations of galaxies and large scale structures (see Carlo
 Giocoli's lecture) each particle is a 'super-star':
 Mass equal to ~1000 or more stars
 UNPHYSICAL RADIUS: softening,
 to avoid spurious relax.

 In simulations of collisional systems
 (star clusters) each particle is a STAR
→ mass~0.1-150 Msun
 and physical radius!

→ POSSIBLE ADD RECIPES FOR
 LUMINOSITY,
 TEMPERATURE,
 METALLICITY
 and LET THEM
 CHANGE WITH TIME!

 ! RESOLVED (not sub-grid) PHYSICS !

6. STELLAR EVOLUTION
 Example of stellar evolution implementation:

SEBA (Portegies Zwart & McMillan 1996)
Stars are evolved via the time dependent mass-radius relations for solar metallicities given by

Eggleton et al. (1989) with corrections by Eggleton et al. (1990) and Tout et al. (1997).
These equations give the radius of a star as a function of time and the star's initial mass (on the
zero-age main-sequence).

In MM+ 2013 the equations were upgraded to include metallicity dependence of stellar
properties (with recipes in Hurley et al. 2000) and mass loss via stellar winds (Vink et al. 2001;
Belczynski et al. 2010).

In the code the following stellar types are identified and tagged as different C++ CLASSES:

 * proto star (0) Non hydrogen burning stars on the Hayashi track
 * planet (1) Various types, such as gas giants, etc.; also includes moons.
 * brown dwarf (2) Star with mass below the hydrogen-burning limit.
 * main sequence (3) Core hydrogen burning star.
 * Hypergiant (4) Massive (m>25Msun) post main sequence star with enormous mass-loss rate in a stage of evolution

prior to becoming a Wolf-Rayet star.
 * Hertzsprung gap (5) Rapid evolution from the Terminal-age main sequence to the point when the hydrogen-depleted

core exceeds the Schonberg-Chandrasekhar limit.
 * sub giant (6) Hydrogen shell burning star.
 * horizontal branch (7) Helium core burning star.
 * supergiant (8) Double shell burning star.
 * helium star (9-11) Helium core of a stripped giant, the result of mass transfer in a binary. Subdivided into carbon core

(9), helium dwarf (10) and helium giant (11).
 * white dwarf (12-14) Subdivided into carbon dwarf (12) , helium dwarf (13) and oxygen dwarf (13).
 * Thorne-Zytkow (15) Shell burning hydrogen envelope with neutron star core.
 * neutron star (16-18) Subdivided into X-ray pulsar (16), radio pulsar (17) and inert neutron (18) star (m<2Msun).
 * black hole (19) Star with radius smaller than the event horizon. The result of evolution of massive (m>25Msun) star

or collapsed neutron star.
 * disintegrated (20) Result of Carbon detonation to Type Ia supernova.

6. STELLAR EVOLUTION
 Example of stellar evolution implementation:

SEBA (Portegies Zwart & McMillan 1996)
Interface with dynamics integrator:

 Difficult to solve for the evolution of dynamics and stellar evolution in a completely
self-consistent way!
trajectories of stars ← block timestep scheme (~1e5 yr)
stellar and binary evolution ← updated at fixed intervals

(every 1/64 of a crossing time, typically a few thousand years).

→ feedback between st. ev. and dynamics may experience a delay of at most one
timestep.

After each 1/64 of a crossing time, all stars and binaries are checked to determine if
evolutionary updates are required. Single stars are updated every 1/100 of an evolution
timestep or when the mass of the star has changed by more than 1% since the last update. A
stellar evolution timestep is the time taken for the star to evolve from the start of one
evolutionary stage to the next.

After each stellar evolution step the dynamics is notified of changes in stellar radii, but
changes in mass are, for reasons of efficiency, not passed back immediately (mass changes
generally entail recomputing the accelerations of all stars in the system). Instead, the
``dynamical'' masses are modified only when the mass of any star has changed by more than
1%, or if the orbital parameters, semi-major axis, eccentricity, total mass or mass ratio of any
binary has changed by more than 0.1%.

7. AN EXAMPLE of DIRECT N-BODY code: starlab
http://www.sns.ias.edu/~starlab/overview/
http://www.sns.ias.edu/~starlab/structure/

* not a code but a software environment,
a collection of modular software tools:
generate ICs (plummer, king),
dynamics, stellar evolution,
binary evolution,
plot tools (better not use),
analysis tools (statistics..some important)

*c++, something in fortran (DON'T USE)
 → CLASSES!!!

*complex, directory structure:

7. AN EXAMPLE: starlab
http://www.sns.ias.edu/~starlab/overview/
http://www.sns.ias.edu/~starlab/structure/

*complex, directory structure:

Dynamics!

Stars!

Common
material
(e.g. random
generators)

Include: *.h definition
of classes

7. AN EXAMPLE: starlab
http://www.sns.ias.edu/~starlab/overview/
http://www.sns.ias.edu/~starlab/structure/

* dynamics:

init: contain tool for initialization

util: data analysis or plot

evolve: evolve dynamics in time

7. AN EXAMPLE: starlab
http://www.sns.ias.edu/~starlab/overview/
http://www.sns.ias.edu/~starlab/structure/

* dynamics:

init: contain tool for initialization
 (src/node/dyn/init/makeking.C)

util: data analysis or plot

evolve: evolve dynamics in time

Kepler: only 2-body Keplerian

 Only leapfrog

HDYN: high-res dynamics
 KIRA INTEGRATOR
./src/node/dyn/hdyn/evolve/kira.C

 only 3-body scattering experiments

7. AN EXAMPLE: starlab
http://www.sns.ias.edu/~starlab/overview/
http://www.sns.ias.edu/~starlab/structure/

* stars:

init: contain tool for initialization

util: data analysis or plot

evolve: evolve in time star or binary

 io: input output of star data

sstar: single stars
 class: single star,
 derived class: MS star, black hole,
 hyper-giant, etcetc
 In starclass/

 dstar: double star
 starclass: only class double star

7. AN EXAMPLE: starlab

Kira: the gravity integrator
http://www.sns.ias.edu/~starlab/kira/
based on 4th order Hermite with corrector/predictor

STEPS:

1. determines which stars need to be updated

2. checks for: reinitialization, log output, escaper removal, termination,
snapshot output

3. perform low-order prediction (grape)

4. calculates acceleration/jerk and correct position/velocities (grape)

5. checks for all unperturbed motion

6. checks for collisions and mergers

7. checks tree reorganization

8. checks for stellar/binary evolution

7. AN EXAMPLE: starlab

kira
http://www.sns.ias.edu/~starlab/kira/
based on 4th order Hermite with corrector/predictor

TREE simpler than tree code: leaves are single stars, parents can be
binaries or multiples, no more

7. AN EXAMPLE: starlab

kira
http://www.sns.ias.edu/~starlab/kira/
based on 4th order Hermite with corrector/predictor

TREE simpler than tree code: leaves are single stars, parents can be
binaries or multiples, no more (FLAT tree)

Example of a 3-body encounter

PERTURBED binaries (3-body) are split into components

UNPERTURBED binaries are evolved ANALYTICALLY

Critical point: how to decide perturber list!!!

7. AN EXAMPLE: starlab

No Aarseth chain and no KS regularization → thanks to the tree and to the continuous
usage of CM/relative coordinates, 3-body encounters are integrated with accuracy
(Portegies Zwart+ 2008)

Motion of a binary component described by (1) influence of companion, (2) influence of
perturbers

A perturber list is done and regularly updated for each binary

If perturbations < threshold → binary is assumed UNPERTURBED
and EVOLVED ANALYTICALLY (KEPLER MOTION)
Only CM motion is integrated numerically.

PERTURBED binaries (3-body) are

split into components

UNPERTURBED binaries are

evolved ANALYTICALLY

Critical point: how to

decide perturber list!!!

7. AN EXAMPLE: starlab

the stellar evolution: SEBA http://www.sns.ias.edu/~starlab/seba/
Portegies Zwart & Verbunt 1996

proto star (0) Non hydrogen burning stars on the Hyashi track

planet (1) Various types, such as gas giants, etc.; also includes moons.

brown dwarf (2) Star with mass below the hydrogen-burning limit.

main sequence (3) Core hydrogen burning star.

Hypergiant (4) Massive (m>25Msun) post main sequence star with enormous mass-loss rate in a stage of evolution
prior to becoming a Wolf-Rayet star.

Hertzsprung gap (5) Rapid evolution from the Terminal-age main sequence to the point when the hydrogen-depleted
core exceeds the Schonberg-Chandrasekhar limit.

sub giant (6) Hydrogen shell burning star.

horizontal branch (7) Helium core burning star.

supergiant (8) Double shell burning star.

helium star (9-11) Helium core of a stripped giant, the result of mass transfer in a binary. Subdivided into carbon core
(9), helium dwarf (10) and helium giant (11).

white dwarf (12-14) Subdivided into carbon dwarf (12) , helium dwarf (13) and oxygen dwarf (13).

Thorne-Zytkow (15) Shell burning hydrogen envelope with neutron star core.

neutron star (16-18) Subdivided into X-ray pulsar (16), radio pulsar (17) and inert neutron (18) star (m<2Msun).

black hole (19) Star with radius smaller than the event horizon. The result of evolution of massive (m>25Msun) star or
collapsed neutron star.

disintegrated (20) Result of Carbon detonation to Type Ia supernova.

REFERENCES:
- The Art of Computational Science, by P. Hut & J. Makino,

http://www.artcompsci.org/

- direct N-body code description:
Starlab → Portegies Zwart et al. 2001, MNRAS, 321, 199

http://www.sns.ias.edu/~starlab/
PhiGRAPE → Harfst et al. 2007, New Astronomy, 12, 357

http://www-astro.physik.tu-berlin.de/~harfst/index.php?id=phigrape
N-body6 → Nitadori & Aarseth 2012, MNRAS, 424, 545

http://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
HiGPUs → Capuzzo Dolcetta et al. 2013, Journal of Computational Physics, 236, 580

http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html

- GPU as hardware: http://www.tomshardware.com/reviews/graphics-beginners,1288.html

- GPU for computing:
Sapporo → Gaburov et al. 2009, New Astronomy, 14, 630
Nvidia Webinars → https://developer.nvidia.com/get-started-cuda-cc

- MPI in direct N-body codes:
Gualandris et al. 2007, Parallel Computing, 33, 159
Portegies Zwart et al. 2008, New Astronomy, 13, 285

- Stellar evolution:
Portegies Zwart & Verbunt 1996, A&A, 309, 179
Hurley et al. 2000, MNRAS, 315, 543
Mapelli et al. 2013, MNRAS, 429, 2298

(from Dehnen
& Read 2011,
arXiv:1105.1082)

SOFTENING

THANKSTHANKS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

