The E-ELT view of resolved stellar population in distant galaxies

Renato Falomo

INAF – Observatory of Padova, Italy

In collaboration with L. Schreiber, D. Fantinel, L. Greggio, M. Uslenghi, S. Zaggia,

- Resolved stellar population in distant galaxies (Virgo cluster)
- The Experiment: : simulated images and photometric analysis

The study of the resolved stellar population in distant galaxies is one the main science drivers for th realization of ELTs

Reconstruction of the star formation history for a stellar system by analyzing its color-magnitude diagram (CMD) is a fundamental tool for understanding its age and chemical composition.

THE GALAXIES AROUND US

A SIGNIFICANT SAMPLING OF THE SFH IN THE UNIVERSE REQUIRES THAT WE USE THE LUMINOUS PART OF THE CMD TO DERIVE SFH

VIRGO - the closest rich cluster of galaxies

Why an ELT?

Very high throughput Excellent spatial resolution

... provided by large aperture and Adaptive Optics

The view of resolved of stellar populations

<u>Disk galaxy (young SP)</u> M(J) = -23, HLR = 5 kpc Distance = 3 Mpc R/HLR = 1 (128 000 stars)

The view of resolved of stellar populations

<u>Elliptical galaxy (old SP)</u> M(J) = -23, HLR = 5 kpc

Distance = 18.3 Mpc R/HLR = 1

The experiment (in 4 steps)

1- Define the galaxy properties

2- Create simulated images

3 – Photometric analysis

4 -Check results

1 – Define the galaxy properties

Massive elliptical galaxy

Absolute Magnitude	M(B)	-22
Effective Radius	Re	10 kpc
Distance (Virgo cluster)	18	Мрс
SB (J) = 17 – 22		

Greggio, Falomo, Zaggia et al 2012: PASP in press, arXiv:1206.0909

The properties of Elliptical galaxy

Stellar population of giant Elliptical galaxy

OLD Stellar Population

Code YZVAR by G.P. Bertelli

(Padova tracks database)

2h integration

2 - The simulation of images

- Select the distance from the center of the galaxy (SB)
- Extraction of the stellar population from mother dataset down to a given mag limit
- Addition of light contribution from unresolved stars
- Total exposure time : 7200 sec (N. of exp = 100)
- Add sky + instrument background, and statistical noise
- PSF by Maory templates (0.6 arcsec seeing + LGS)
- Simulated field of View : 3 arcsec

Ellptical galaxy 0.5xRe Filter J FoV 3 arcsec Exp: 7200 sec

1 "

2 - The simulation : Images – J band

R = 2.0 x Re 20 kpc

FoV = 1""

2 - The simulation : Images – J band

FoV = 1"

R = 0.5 x Re 5 kpc

SB = 19.2

2 - The simulation : Images – J band

R = 0.2 x Re 2 kpc

SB = 17.6

FoV = 1"

3 - The photometric analysis with Starfinder

 Designed and developed (1997-2000) for images with structured PSF but uniform across field of view

No information on the simulated galaxy/star field is provided

analysis 3**F fitting**

Galactic Center (Rigaut et al. 1998)

CFHT PUEO K band Field of view: 13"×13" Strehl Ratio ≈0.40 Numerical PSF

- Written in IDL
- Graphical User Interface
- Available on the Web

Diolaiti et al. 2000, A&AS 147, 335

Method: constant PSF

Extracted PSF 3D model

Numerical PSF template extracted from the entire frame and obtained as a median of a set of star images

Method: variable PSF

Implemented in Starfinder (but not in GUI)

Divide image in sub-domains and use set of local PSFs \rightarrow Photometric errors among sub-domains

Comparison : Input VS observed mag : I

Single match Multiple match

Comparison : mag error vs SB/crowding

Distorted PSF: mag errors

10% distortion

FWHM

Ellipticity

Method: variable PSF

Divide image in sub-domains and use set of local PSFs → Photometric errors among sub-domains

Uniform vs Distorted PSF: mag errors – J band

Uniform PSF Distorted PSF

No significant difference found for 10% PSF distortion

4 – Check results of photometry Galaxy in Virgo DM = 31 (18 Mpc)

E galaxy in Virgo 0.5xRe CMD – MICAD@ E-ELT 2 h

Comparison of CMD – case E2 (0.2 Re)

E galaxy in Virgo 0.2xRe CMD – MICAD@ E-ELT 2 h

Conclusions

Detailed experiment to probe the ELT capabilities to obtain direct information on the SFH in distant galaxies

Massive elliptical galaxy in Virgo

FoV = 1"

MICADO @ E-ELT

High resolution NIR imaging at ELT offers a unique opportunity to investigate stellar population in distant galaxies up to Virgo distance

Greggio, Falomo, Zaggia et al 2012: PASP in press, arXiv:1206.0909

