The radio spectral index of sub-mJy sources and physical processes associated

 A. Mignano^{1,2}, I. Prandoni¹, L. Gregorini^{1,3}, P. Parma¹, M.H. Wieringa⁴, H.R. De Ruiter^{5,1}, G. Vettolani^{6,1}, R.D. Ekers⁴

¹ INAF - Istituto di Radioastronomia, Via Gobetti 101, I-40129, Bologna, Italy

² Dipartimento di Astronomia, Università di Bologna, Via Ranzani 1, I-40126, Bologna, Italy

³ Dipartimento di Fisica, Università di Bologna, Via Irnerio 46, I-40126, Bologna, Italy

⁴ CSIRO Australia Telescope National Facility, P.O. Box 76, Epping, NSW2121, Australia

⁵ INAF - Osservatorio Astronomico di Bologna, Via Ranzani 46, I-40126, Bologna, Italy

⁶ INAF - Viale del Parco Mellini 84, I-00136, Roma, Italy

Background sub-mJy radio population

- Flattening of normalized source counts from deep 1.4 GHz survey (e.g. *Windhorst et al. 1990*)
- New radio population
- Mixture of different classes of objects:
 - S.F. galaxies dominate at µJy fluxes
 → (e.g. Richards et al. 1999, Sullivan et al. 2004, Ciliegi et al. 2005)
 - ETS gal. more important at sub-mJy and mJy fluxes (e.g. *Gruppioni et al.* 1999, Prandoni et al. 2001b, Sullivan et al. 2004, Ciliegi et al. 2005)
- Problems:
 - Incomplete identification (at most 70-80%).
 - More severe incompleteness in spectral information.

SFH & AGN Evolution

- mJy/sub-mJy samples: Study of the radio ... but in the last years, evolving picture: emitting AGN evolution:
 - Evidence of increase of comoving number density of AGN up to
 - z 2-device of increase of comoving number density of AGN up to z 2-device on the solution of t
 - Waddinglon Mal.\$2000) is the only study of a deep radio sample aimed at deriving the AGN RLF → evidence of decline in RLF at z > 2-3. Indication for lower luminosity AGN to peak at lower z.
 multi-fielder by or a diagonal of the sample.
 - crucial to determine the nature of mJy and sub-mJy population (origin of radio emission).

Why this project?

- The sample: 131 radiosources over 1 sq. deg. covered at 1.4 and 5 GHz down to 0.4 mJy (ATESP survey) and by U B V R I J K_s multicolor imaging down to R_{lim} ~ 25 (DPS Survey)
- Scopes: statistical study of faint radio population (80% id rate) → composition, z distrubution, radio spectra analysis
- → study the RLF of AGNs at low L_{1.4GHz} doubling the Waddington sample

Radio & Optical DATA

Radio Data

The 1.4 GHz ATESP survey (*Prandoni et al. 2000a, b*), covering 26 square degrees, was carried out with the Australia Telescope Compact Array (ATCA). A region of 1 square degree was also imaged at 5 GHz (*Prandoni et al. 2006*).

1.4 GHz ATESP Survey:

- 26 square degrees at $\delta = -40^{\circ}$
- 16 radio mosaics with uniform rms flux ~ 80 μJy
- 2967 sources catalogued down to ~ 0.4 mJy (109 in 5GHz region)
- Spatial resolution: ~ 10"

5 GHz ATESP Survey:

- 1 square degree at $\delta = -40^{\circ}$
- $2 radio mosaics with uniform \ rms flux \sim 70 \ \mu Jy$
- 111 sources catalogued down to ~ 0.4 mJy
- Spatial resolutions:
 - -~10" → radio spectra

 $-\sim 2$ " \rightarrow radio morphology

Optical Data - DPS optical

• The ATESP 5 GHz region was imaged in several optical and infrared passbands in the framework of the ESO *Deep Public Survey* (DPS), which comprises three 1 square degree regions (DEEP1, 2, 3) in the southern sky.

• The DPS was carried out in the optical (U, B, V, R, I), using the WFI (Wide Field Imager) camera mounted at the 2.2mt ESO telscope.

• The DEEP1 (the DPS region which overlaps with the ATESP) has typical depths of $U_{AB} \sim 25.7$, $B_{AB} \sim 25.5$, $V_{AB} \sim 25.2$, $R_{AB} \sim 24.8$, $I_{AB} \sim 24.1$ (*Mignano et al. 2006*).

Region: DEEP1b

Overview of Optical/NIR Surveys

Salvato 2005

www.mpe.mpg.de/~mara/surveys

1.20	+	20.02
0.97	1	24.19
0.073 ± 0.238	13	22.14 ± 0.23

ĩ J

Deep1b →

Radio Optical Analysis

Identification

• 85 ATESP Radiosources searched for id with color catalogs (deep1a, b, c) with the Likelihood Ratio technique.

Field	Nrad	$N_{id} \ge LR_{thresh}$	С	(1 - R)	Mult.	NIR	N_{id}^{tot}	(%)
DEEP1a	27	18	98.6	7.4	2	2	22	77.8
DEEP1b	26	19	99.1	6.8	1	0	20	76.9
DEEP1c	32	21	99.0	6.3	0	0	21	65.6
ATESP-DEEP1	85	58	98.9	6.8	3	2	63	74.1

Survey	S_{lim}	(N_{rad})	area	I_{lim}	$\%_{id}$
	(mJy)		(sq.degr.)		
VVDS-VLA	0.08	1054	1	25	74.0
Phoenix	0.1	839	3	25	79.0
VLA-LH	0.05	63	0.03	24.5	92.0
ATESP-EIS	0.4	386	3	22.5	57.3
ATESP-DEEP1	0.4	85	0.5	25	74.1

Photometric Spectra of Radio-Sources

StarBurst

2.5.10

- 42 ATESP radiosources in the 0.5 sq. deg. with 0 extensive color information analyzed with Hyperz
- Used default SEDs (from normal galaxies to quasars). \mathbf{O}
- In addition, some peculiar quasar SEDs (Red and BAL 0 QSO) directly downloaded from the SDSS web pages.

0

4×101¹⁷ 2×10⁻¹⁷ di ossul 9000 36/42 (86%) reliable 7000 8000 6000

Lunghezza d'onda (angstrom)

From ATESP-EIS to ATESP-DPS Faint Radiosource Composition

Composition: out of 42 identified ATESP radiosources:

- 24 (57%) ETS (Elliptical, S0)
- 6 (14%) QSO
- 6 (14%) LTS (Spirals and starburst galaxies)
- 6 (14%) UNCL

Table 6.1: The ATESP–DEEP1 sample composition.

Survey	mag lim	ETS(%)	LTS+SB (%)	AGN (%)	UNCL (%)
EIS-Wide	< 19	49 ± 8	43 ± 8	9 ± 3	-
EIS-Wide	19 < I < 22.5	46 ± 13	11 ± 6	25 ± 9	18 ± 8
ATESP-DEEP1*	I < 25	60 ± 12	14 ± 6	14 ± 6	12 ± 5

*based on identified sources in regions DEEP1a and b

28 spectra at 19 < I < 22.5

R = S_{1.4}*10^(m-12.5) • R < 100 → Star Formation • R > 100 → Nuclear Activity

Redshift & Radio Power distribution

Redshift Distribution (see Figures):

- ETS up to z = 2 (peak at z = 0.7)
- QSO up to z = 5.
- LTS up to 0.5
 Radio Power Distribution:
- ETS →10²³⁻²⁵ W Hz⁻¹ (triggered by low-intermediate luminosity AGNs)
- QSO \rightarrow P = 10²⁵⁻²⁶ WHz⁻¹
- LTS $3/5 \rightarrow P < 10^{22} \text{ WHz}^{-1} (\text{SF})$

→ Sample largely dominated (70%) by AGN activity

Radio Spectra Analysis -Intro

- Spectral index $\alpha \rightarrow S \propto v^{\alpha}$
- $\alpha < -0.5 \rightarrow$ steep spectrum
 - Sinchrotron ($\alpha = -0.7$)
 - SF
 - AGN (useful info from radio morphology)
- $\alpha > -0.5 \rightarrow$ flat spectrum, ($\alpha > 0$) inverted
 - Thermal bremsstrahlung (SF on large scale)
 - Sinchrotron autoabsorbed (AGN)
 - ADAF ? (Fiore 2000)
- → mJy RS have α < -0.5 → flattening of spectra at deeper fluxes (Donnelly 1987, Gruppioni 1997)</p>
- → Multifrequency Data available for very small mJy & sub-mJy samples

Radio Spectra analysis - I

- Analysis on the entire ATESP-DEEP1.
- Significant flattening with decreasing flux:
 - S > 4 mJy → steep spectrum ($\alpha \sim 0.7$) → synchrotron radio emission. S < 4 mJy → 46% (at 1.4 GHz), 63% (at 5 GHz) → flat spectra (α > -0.5) with significant fraction (29% at 5 GHz) of inverted spectra (α >0).
- General agreement with what found in literature (*Fomalont et al. 1991, Donnelly et al. 1987*).
- RS multiple/extended (typically AGN) → steep synchrotron radio spectra, mainly found at mJy flux densities. Unresolved multiple-component present also at lower fluxes, but poor deconvolution (*Prandoni et al. 2006*).

Radio Spectra analysis – II

Global analysis of the radio and optical properties of the ATESP-DEEP1 sample. Any existing optical information used. In particular from the EIS-WIDE survey We found that:

- most of the flat-spectrum sources

 → high R (> 1000), typically
 associated to classical powerful RG and QSO.
- flat-spectrum sources (low R) preferentially identified with ETS
 → (radio emission probably triggered by low-luminosity AGNs).
- 3. SF galaxies typically associated to steep-spectrum sources, (synchrotron emission in galactic disks or in nuclear starbursts).

Summary

- ✓ Reduction of DPS
- ✓ Production of color catalog
- ✓ New technique for photometry check
- ✓ Identification with ATESP survey (74%)
- ✓ Composition of ATESP sample and distribution in L, P, z for each type → largely (70%) dominated by nuclear activity
- ✓ Flattening of radio spectra at sub-mJy fluxes
- ✓ Flat spectra → ETS/AGN (autoabsorbed AGN?, less efficient accretion?)

The future?

- ♣ Complete observation of Deep1 (→enlarge the sample) – ongoing observations & proposals
- ...with a larger sample: study of AGN luminosity function with a complete sample of objects at low L

Flat spectra ETS selected for detailed study

Analysis Plots (2)

• N vs Radio Power

- ETS \rightarrow 21<Log(P)<27
- QSO \rightarrow Log(P) < 26
- LTS \rightarrow Log(P) < 24
- SB \rightarrow Log(P) > 25.5

QSO

×

18

20

22

RadioPower (1.4 GHz)

24

26

Analysis Plots (3)

• N vs Spectral Index

- ETS (also inverted spectra!)
- QSO \rightarrow mainly flat spectra
- LTS \rightarrow steep spectra (SF)
- SB \rightarrow steep spectra (SF)

Analysis Plots (4)

• N vs Abs Mag (I)

- ETS (typically red)
- QSO \rightarrow brighter
- LTS \rightarrow blue
- SB \rightarrow blue

mJy & Sub-mJy Surveys

• Study of the evolution of RLF (high z cut-off)

LBDS (Leiden Berkley Deep Survey), Waddington et al. 2001

- $Flux_{1.4GHz} > 1 mJy$
- Area = 1.2deg^2
- $N_{rad} = 72$
- 2/3 z_{spec} 1/3 z_{phot}
- More luminous radio sources preferentially form at earlier epochs.
- Less massive galaxies will typically take longer to become active and will have a lower radio luminosity.
- Study the population of nearby radio galaxies at 1mJy level 2dF Galaxy Redshift Survey, *Magliocchetti et al. 2002*
 - $Flux_{1.4GHz} > 1 mJy$
 - Area = large
 - $N_{rad} = 557 (2,3\% \text{ of whole FIRST sample})$, identified down to $b_j < 19.5$
 - Compositon of the sample:
 - 63% ETS, z>0.1, 10^{21} <P < 10^{24} , RO>>
 - 32% (LTS+SB), z<0.1, P<10^{21.5}, RO<
 - majority of radiosources in merger/interaction are ETS → galaxy-galaxy interaction triggers AGN activity at low z

• Radio Spectra in sub-mJy sample

ATESP 5GHz, Prandoni et al. 2005 (submitted)

VLA Survey in Lockman Hole, *Ciliegi et al. 2002*

- $Flux_{5GHz} > 50 \mu Jy (4.5\sigma)$
- Area = $10 \operatorname{arcmin}^2$
- $N_{rad} = 63,92\%$ identified down to I<24.5
- Flat spectra grows at S<< (increasing number of self-absorbed AGNs among the µJy population?)
- majority of radiosources in merger/interaction are ETS → galaxy-galaxy interaction triggers AGN activity at low z
- 2% of EROS in the optical sample has radio emission → if it is a sign of AGN activity, it means that the optical IR selected EROS populations contains a small fraction of active AGN

- Study the star formation of galaxies up to z=1 Phoenix survey, *Sullivan et al. 2004*
 - Goal: to study the star formation of galaxies up to z=1
 - $Flux_{1.4GHz} > 0.1 \text{ mJy } (4\sigma)$
 - Area = 3 deg^2
 - $N_{rad} = 839,79\%$ identified down to I<25 (U,B,V,R,I,K available)
 - Compostion of the sample:
 - 63% LTS, 0<z<1.3,
 - 20% ETS-AGN

VVDS-VLA Sample, *Ciliegi et al. 2005*

- $Flux_{1.4GHz} > 80 \mu Jy$
- Area = 1.2deg^2
- $N_{rad} = 1054, 74\%$ identified down to I<25
- U,B,V,R,I,K (partially covered)
- Z_{phot}(RS) > z_{phot} (optical sample)
- (V-I) RS redder than median optical population
- radio detection selects high intrinsic L_{opt}

Radio Spectra analysis - II

General agreement with what found in literature:

- Fomalont et al. (1991) report a $\alpha_{med} = -0.38$ and a f($\alpha > -0.5$) = 60% at fluxes 16 < S_{5 GHz} < 1000 µJy; while
- Donnelly et al. (1987) report $\alpha_{\text{mean}} = -0.31 \pm 0.58$, $\alpha_{\text{med}} = -0.42$ and $f(\alpha > -0.5) = 50\%$ at 0.4 < S_{5 GHz} < 1.2 mJy).
- − Steeper behaviour found by *Donnelly et al.* (1987) at 1.4 GHz: $\alpha_{mean} = 0.80 \pm 0.49$, $\alpha_{med} = -0.76$ and $f(\alpha > -0.5) = 22\%$ at 0.5 < S_{1.4 GHz} < 3 mJy → significantly different composition on the faint radio population depending of the selection frequency.

Flux range	freq.	Ν	weighted mean α	median α	$f(\alpha > -0.5)$	$f(\alpha > 0)$
All fluxes	$1.4~\mathrm{GHz}$	109	-0.56 ± 0.33	-0.56	47 (43%)	10 (9%)
S > 4 mJy	$1.4~\mathrm{GHz}$	22	-0.62 ± 0.28	-0.71	7(32%)	-
$S \leq 4 \text{ mJy}$	$1.4~\mathrm{GHz}$	87	-0.42 ± 0.38	-0.53	40 (46%)	10 (11%)
All fluxes	5 GHz	111	-0.52 ± 0.37	-0.39	67 (60%)	28 (25%)
S > 4 mJy	5 GHz	13	-0.60 ± 0.29	-0.62	5(38%)	-
$S \leq 4 \text{ mJy}$	$5 \mathrm{GHz}$	98	-0.43 ± 0.44	-0.29	62 (63%)	28~(29%)

Only U-band has a large offset beyond the normal photometric calibration error (0.1)

Applied for both the fields a correction in U-band of 0.15 mags

- > Few standards in U-band images
- In other filters very good agreement with Girardi model. Also comparing different instrument (WFI+Sofi) colors
- ➤ This correction found from the color catalog (by matching) has been applied to the color catalog (reference image) → verification of the impact of the correction through the comparison with a spectroscopic sample

