
Compact Radio sources at Low Z (CORALZ) A progress report

Karl-Heinz Mack – IRA-INAF Bologna Ignas Snellen – Sterrewacht Leiden Richard Schilizzi – International SKA Project Office, Dwingeloo Mara Latanioti – U Bologna

Vague definition based on position of turnover frequency High-Frequency Peakers (HFP): peak at > 5 GHz GHz-Peaked Spectrum (GPS): peak at ~ 1 GHz Compact Steep Spectrum (CSS) : peak at ~ 100 MHz Turnover frequency anti-correlates with their size (SSA)

Existing samples: HFP bright (Dallacasa et al. 2000)

GPS bright (Stanghellini et al. 1998) GPS faint (Snellen et al. 1998)

CSS bright (Fanti et al. 1990) CSS medium (B3VLA-CSS, Fanti et al. 2001)

Nearby (z< 0.2) compact sources very rare: 10 in complete samples

Sample selection

FIRST survey @ 1.4 GHz (White et al. 1997)

 \Rightarrow 1515 point-like sources with S_{peak} > 100 mJy $(30^{\circ} < \delta < 57.5^{\circ} \ , \ b > 30^{\circ})$

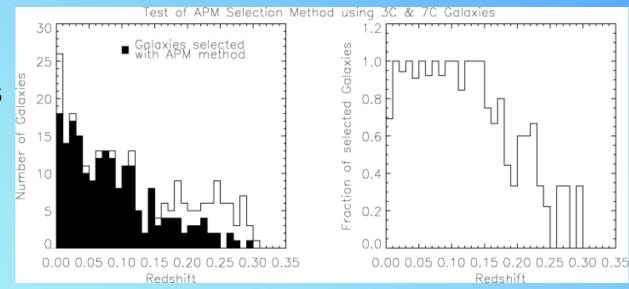
 \Rightarrow 77 objects with APM extended sources of e < 16.5^m (R) and o < 19.5^m (B) within 10["]

After visual inspection (filter out spurious objects and artifacts)

 \Rightarrow 28 objects at 0.008 < z < 0.232

Completeness of the sample

Completeness as a function of redshift


- Uncertainty in the APM magnitudes (~0.5^m)
- Dependence of raw APM magnitudes on angular size of the object
- Range in absolute magnitudes of the radio galaxies
- Large bright galaxies can cause artifacts in the APM and can be missed.
- \Rightarrow Complicated redshift selection function

Completeness of the sample <u>Completeness as a function of redshift</u>

- NED to select all known radio galaxies in 3C and 7C at z < 0.3 located within the APM survey region.
- \Rightarrow 268 nearby radio galaxies with similar radio flux density and luminosity range
- ⇒ Cross-correlation with APM
- \Rightarrow 95% completeness in 0.005 < z < 0.16
- ⇒ 17 sources in complete CORALZ sample

Completeness of the sample

Completeness and reliability of optical identifications

- Combined uncertainty in the optical and radio: ~ 0.7"
- 24/28 sources have radio-optical positional offsets < 1.5"
- Maximum likelihood method (De Ruiter et al. 1977): cut-off 2" ⇒ 97% completeness, 98% reliability

Selection bias against the most compact sources

- Source selection at 1.4 GHz \Rightarrow HFPs
- \Rightarrow CLASS (Myers et al. 2003): sources with estimated
 - $S_{1.4GHz}$ > 100 mJy (based on 8.4-5 GHz spectral index):
- \Rightarrow 455 additional sources (5 identified with bright APM galaxies, but steep spectral index probably caused by variability)

14.0	S	Radio Posicion (J 2000)		Δ_{pos}	2	$S_{14\rm GHz}$	LSOGHE	nadio spectrum		
Nume		RA	Dec.	(arcsec)		(mly)	$(W Hz^{-1})$	ν _{peak} (GHz)	S _{peak} (mJy)	α _h
The Complete COR.	ALZ san	nple at 0.005 $<$ g $<$	0.16							
1073328+560541	F	07 ^b 33 ^m 28.64	+56°05 ′41′′9	0.5	0.104	394	24.68	460	420	-0. 87
1073934+495438	F	07 ^b 39 ^m 34 ⁱ 89	+49° 54′38''9	0.5	0.054	107	23.63	950	100	-0.88
1083139+460800	F	08 ^b 31 ^m 39'.81	+46° 08′ 00 ″??	0.2	0.127	131	24.62	2200	130	-0.81
1083637+440109	F	0 8 ^b 3 6 ^m 37.283	+ 44°01′09′(4	0.2	0.054	139	23.66	<150	> 390	-0.65
1090615+463618	F	09 ^h 06 ^m 15l.52	+46° 36′ 1970	0.3	0.085	314	24.49	680	300	-0.69
1102618+454229	F	10 ^b 26 ^m 18°.28	+45° 42′ 29′ 5	0.5	0.153	105	24.55	180	150	-0.41
1103719+433515	F	10 ^b 37 ^m 19i34	+43°35′15ï2	1.0	0.023	129	22.96	<150	> 230	-0.62
1120902+411559	F	12 ^h 09 ^m 02i80	+41° 15′ 3974	0.7	0.095	147	24.26	370	170	-0.71
11317394411545	F	13 ^b 17 ^m 39'.21	+41° 15′46″0	0.3	0.066	249	24.37	2300	270	-0.68
1140051-4521606	F	14 ^b 00 ^m 51.62	+32° 16′06′.6	0.9	0.116	174	24.36	<130	> 760	-0.91
1140942+360416	F	14 ^b 09 ^m 42°.46	+36°04′16ľ0	0.5	0.148	143	24,45	330	220	-1.34
1143521+505122	F	14 ^b 35 ^m 21.68	+30° 51 ′22′′8	0.3	0.099	141	24.20	<130	> 450	-0.69
1150805+342323	F	15 ^h 08 ^m 05168	+34° 23′ 23′ 3	0.7	0.045	130	23.35	-230	> 250	-1.31
1160246+524358	F	16 ^h 02 ^m 46l39	+52°43′58ï7	0.7	0.106	576	24.75	~150	> 1610	-1.10
1161148+404020	F	16 ^h 11 ^m 48.55	+40° 40′ 20′ 9	0.3	0.152	553	25.03	<150	>4340	-1.09
1170330+454047	F	17 ^h 03 ^m 30*38	+45° 40′ 47′(1	0.2	0.060	119	23.54	<150	> 380	-0.88
11718544544148	F	17h18m54:40	+54°41′48ï2	0.1	0.147	329	24.86	480	440	-1.35
Other nearby sources	in the s	ample								
1093609+331308	C .	09 ^b 36 ^m 09 ⁱ 37	+33° 13′08'.6	0.1	0.076	55	23.84	2200	57	-0.38
11016364563926	F	10 ^b 16 ^m 36'.10	+56° 39′ 26′ 9	0.3	0.232	108	24.91	<150	> 300	-0.74
1105731+405646	\sim	10 ^h 57 ^m 31?17	+40° 56′46 ′0	0.0	0.008	47	21.59	1250	46	-1.09
J115727 + 4318 06	F	11 ^h 57 ^m 27 !60	+ 43° 18′0678	1.5	0.229	256	25.25	<150	>2D0	-0.44
1132513+395552	C	13 ^b 25 ^m 13 ^s .40	+39° 55′ 53′ 0	0.6	0.074	36	23.69	1900	50	-1.04
1134035+444817	\mathbf{C}	13 ^b 40 ^m 35?20	+44° 48′ 17′′4	1.0	0.065	82	23.89	2300	90	-0.39
1155927+533054	F	15 ^h 59 ^m 27166	+53°30′54″7	1.2	0.178	182	34.67	~150	> 1840	-1.19
Compact radio source	es locato	ed towards probably	random foregroun	d galaxies						
107 1509+452555	C	07 ^b 15 ^m 09!94	+45° 25' 55. 9	2.6	0.042	74	23.52	3800	84	-0.50
1080454-433537	F	08 ^h 04 ^m 54!91	+43°35'37''2	3.4	0.123	360	24.78	1500	310	-1.80
1115000-1552821	F	11h50m00t15	+55° 28′ 21′ 1	2.6	0.130	143	24.57	-230	> 180	-0.56
1134158+541524	P	13 ^b 41 ^m 58°54	+54° 15′24(7	8.3	0.063	125	23.52	<150	> 430	-1.30

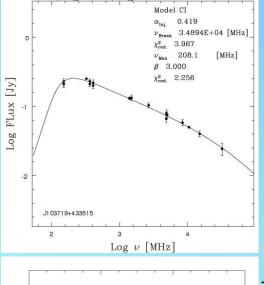
Radio follow-up with Effelsberg, VLA, and existing surveys (Cambridge, Texas, CLASS etc.)

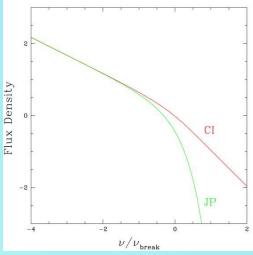

All sources (except J1016+5639) defined as GPS(6) or CSS(10).

Flux density variability:

7 sources with deviation from best fit $> 3\sigma$.

- => 5 sources CLASS selected
- => 2 sources FIRST, one at z=0.232


=> Variability plays minor role

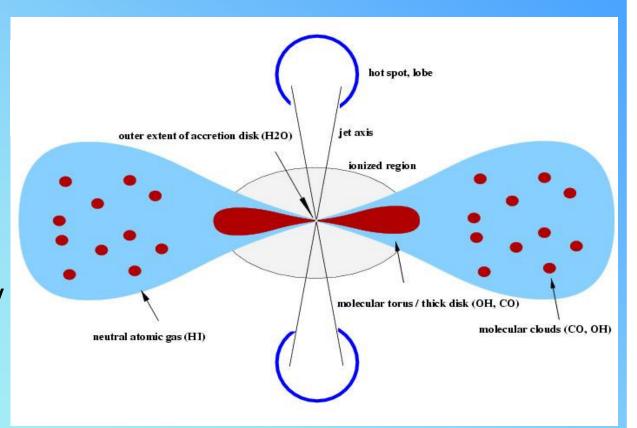


Spectral Ageing Analysis

Fit of synchrotron loss models to radio 1000 spectrum 100 \Rightarrow Break frequency v_{br} 10 $\tau_{\rm syn} \propto \frac{\sqrt{B}}{B^2 + B_{IC}^2} \frac{1}{\sqrt{(1+z)\nu_{\rm br}}}$ 0.1 0.01 0.001 $\Rightarrow \tau_{syn} = 50... < 1.3 \cdot 10^6 a$ (cmp. Murgia et al. 1999) 0.0001 10-5 10-5 0.0001 0.001 0.01 0.1 100 1000 DI (kpc

Expansion velocity: 0.002c ...0.4c

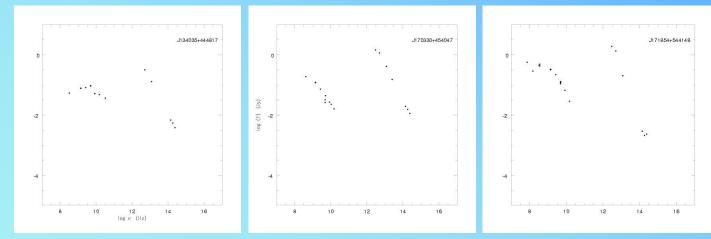
Compare with dynamic age



The structure of young AGN

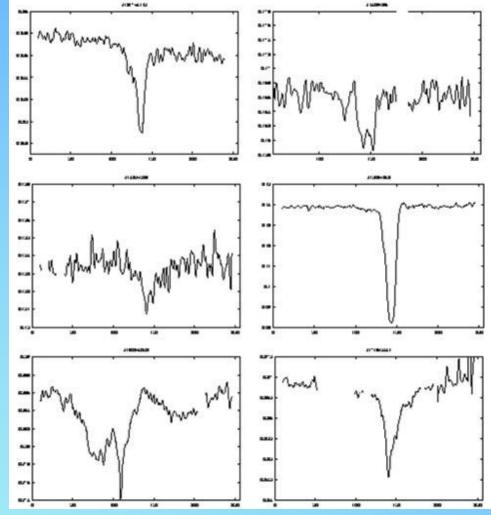
AGN in compact radio sources: higher gas and dust contents radio continuum emission `illuminates' the Interstellar Medium

- Radio morphology
- dust emission
- HI absorption
- CO emission
- Megamasers
- Optical spectroscopy



Dust emission

- Three sources detected by IRAS
- Pico Veleta MAMBO (250 GHz) in course to disentangle synchrotron and dust contribution
- JCMT SCUBA/SCUBA2 observations (850µ, 450µ)
- Tentative dust masses: $1.7 \cdot 10^3 M_{\odot} 9.6 \cdot 10^6 M_{\odot}$ (two-temperature approximation: 40 - 120 K)
- \Rightarrow slightly lower than the ones reported by Fanti et al. (2000)
- \Rightarrow frustration scenario can be ruled out

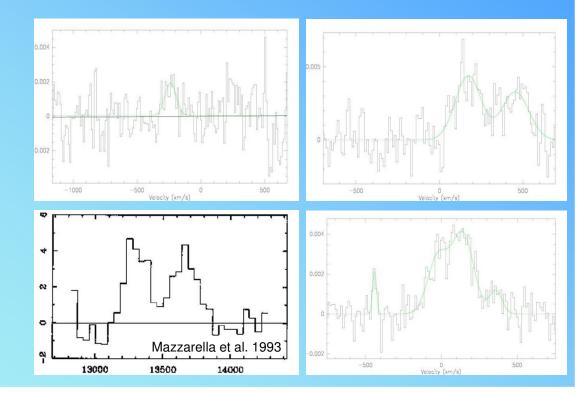


HI absorption

24/24 observed with WSRT 15/24 analysed 6/15 detected: ~ 40% Vermeulen et al. (2003): 33%

CORALZ column densities: 5.8 ·10²⁰ cm⁻² ...1.2 ·10²² cm⁻²

All lines fall in the most sensitive range of 1.4-GHz VLBI. High-resolution mapping of first two sources currently under analysis.



CO emission

No systematic study so far; few sources observed as part of other samples Typical gas masses: some 10^{10} M_o (based on CO(1-0))

Pico Veleta: CO(1-0) @ 115 GHzOngoing programme 6/18 sources observed 4 detections Corresponding H₂ masses: $1.2 \cdot 10^8 M_0 \dots 3 \cdot 10^{10} M_0$

Conclusion

CORALZ:

- First statistically complete sample of young sources at z<0.16
- Selection only based on compactness and vicinity
- Number of nearby young sources increased by a factor 3
- Follow-up programmes:
 - spectral/dynamic ageing
 - dust content
 - HI absorption
 - CO
 - Megamasers
 - Optical spectroscopy