The M_{BH}-M_{Bulge} relation for low-z AGN: preliminary analysis of a sample from SDSS-DR4 data

D. Bettoni, R. Falomo

INAF - Osservatorio astronomico di Padova

M. Salvato California Institute of Technology

Estimating black hole masses

- Dynamical measurement
- BLR line widths plus region size
 - reverberation mapping
 - $-M_{BH}$ L_{rad} relation
- X-ray Fe line
- $\underline{M}_{\underline{BH}}$ σ relation
 - direct measurement
 - through fundamental plane

THE AIM

Investigate the Black Hole mass distribution of a large and homogeneous datasets of low-redshift AGN.

We plan to use L_{5000} and H_{β} to derive M_{BH}

We will try to answer the following question: Can we use SDSS images to measure M_{Bulge} for AGN? And derive M_{BH} from M_{Bulge} ?

400 AGN black hole masses

- Collected ~200 from literature
- Estimated ~200 using host galaxy properties
- Measured bolometric luminosities from SEDs

Radio luminosity vs. M_{BH}

McLure and Jarvis 2004

The M_{BH}-M_{Bulge} relation for low-z AGN The Sloan sample

Redshift range : 0.01<z<0.3

 $fracdeV_r > 0.8$

Sloan flag "QSO" or "High-z QSO"

EW $H_{\beta} > 5$ EW OIII > 0

Two steps:

Measure the spectra and derive L_{5000} and FWHM of H_{β}

Analyse the images using GALFIT in order to separate the Bulge luminosity from the luminosity of the central Point Source

EqW OIII

FWHM OIII

Fit: $R^{1/4} + PSF$

Fit: R^{1/4}+ PSF+Point source

Fit: $R^{1/4} + PSF$

Fit: R^{1/4}+ PSF+Point source

Fit: $R^{1/4} + PSF$

Fit: R^{1/4}+ PSF+Point source

Fit: $R^{1/4} + PSF$

Fit: R^{1/4}+ PSF+Point source

Fit: $R^{1/4} + PSF$

Fit: R^{1/4}+ PSF+Point source

We have to check the L_{5000} and H_{β} data to correct for stellar continuum

YES: Using GALFIT we can derive the bulge magnitude in AGN untill z~ 0.25-0.3

Using GALFIT we can also measure the effective radius (r_e) of the true bulge component and derive the Kormendy relation for these AGN