Black Hole Masses and Eddington Ratios of AGNs at 0.4<z<1: evidence of retriggering

Lucia Ballo

S. Cristiani (OAT), F. Fontanot (DAUT), P. Monaco (OAT, DAUT), M. Nonino (OAT), P. Tozzi (OAT), E. Vanzella (OAT), L. Danese (SISSA)

Nucleus vs host

✓ SMBHs ubiquitous at the centers of local spheroids (Richstone et al. 1998)

✓ Tight correlations between M_{BH} & host properties → coevolution

✓ local SMBHs = relics of past AGN activity (transient phase of galaxy evolution) (e.g. Brandt & Hasinger 2005)

<u>OSS</u> 0.2 dex $A M_{\rm BH}$ vs $M_{\rm R}$ (bulge) 0.42 dex (ACTIVE) ♦ Found for INACTIVE and LOCAL galaxies; confirmed for ACTIVE and LOCAL galaxies

Accretion and Background X

Deep X-ray surveys \longrightarrow more than 80-90% from extragalactic point sources (Brandt et al. 2001, Rosati et al. 2002, Hasinger et al. 2001)

Optical spectroscopic identification \longrightarrow mix of absorbed and unabsorbed AGNs (Szokoly et al. 2004, Barger et al. 2003)

CDFN image (Alexander, Bauer, Brandt et al.)

The bulk of XRB (2-10 keV)

- ✓ in a narrow range of redshift (0.5 < z < 2)peaking at $z \sim 1$
- \checkmark by AGNs with X-ray luminosity between

 $\sim 10^{42}$ and 10^{45} erg s⁻¹

(Veda et al. 2003)

Evolution models

e.g. Granato et al. 2001, 2004

 ✓ Big BHs form in deeper potential wells → grow faster.
✓ Smaller BHs form in shallower potential wells → take more time to grow.

(Marconi et al. 2003)

The multiwavelength advantage: GOODS overview

Study galaxy formation and evolution over a very wide range of cosmic lookback time
Multi Wavelength Survey
Area: 2 × 160 arcmin² fields (HDFN and CDFS)

Space Based: ACS on HST Spitzer Chandra XMM-Newton GALEX

Ground Based: VLT/ESO Keck Gemini Subaru NOAO ATCA VLA SCUBA MAMBO

(ApJL special issue 2004 January 10)

Sample selection

X-ray selected sources with 0.4<z<1 (spectroscopic + photometric)</p>

- ✓ Selection in luminosity (AGN) Log L_{2-8 keV} > 42 erg s⁻¹
- ✓ ALL cutouts OK: 23+2 (CDFS) 25+3 (HDFN) → Initial sample

✓ Not isolated (projected radius ~ $2'' \approx 13$ kpc at the mean redshift)

23/05/06

The nature of our sample: diagnostic diagrams

The Analysis

Image preprocessing & PSF derivation

Bidimensional deconvolution GALFIT (Peng et al. 2002)

nucleus – bulge – disk

m_i + Δm_i fixed new fit until Δχ²=1

CDFS source 34 (1)

	Z	i	V	В	
	r('')	PA(°)	b/a		
Nuc	23.85	24.89	25.18	25.20	
	-	-	-		
Disk	22.40 0.17	22.68 -7.22	23.63 0.48	24.17	
Bulge	22.74 0.60	23.51 -6.22	24.92 0.46	27.87	

redshift = 0.839 *i*_{GOODS}=22.19

$$\label{eq:relation} \begin{split} \Gamma &= 1.58 & \text{N}_{\text{H}} = 6.4 \cdot 10^{21} \, \text{cm}^{-2} \\ \text{HR} &= -0.34 & \text{C-thin} \\ \text{L}_{2-8 \, \text{keV}} &= 8.5 \cdot 10^{42} \, \text{erg s}^{-1} \\ \text{L}_{0.5-2 \, \text{keV}} &= 5.20 \cdot 10^{42} \, \text{erg s}^{-1} \end{split}$$

(Tozzi et al. 2006)

Host-dom. (6 obj)

Nucleus-dom. (2 obj)

Strict coevolution M_{bulge}/M_{BH}:
BH stops at z, bulge evolves in M
M_{BH} *lower* limit
M_{bulge} formed at z, BH accretes
M_{BH} *upper* limit
BUT: how to reach the correlation?

✓ M_{BH} vs bulge: different norm.
R-band: lower limit

RESULTS: α_{OX} and k_X

RESULTS: M_{BH}, L_{bol} & Eddington ratios (1)

 $\lambda = L_{bol}[erg \ s^{-1}]/1.3 \ \cdot 10^{38}M_{BH}[M_{SUN}]$

(McLure & Dunlop 2004)

RESULTS: M_{BH}, L_{bol} & Eddington ratios (II)

vs QSO sample (Vestergaard et al. 2006)

 $\lambda = L_{bol}[erg \ s^{-1}]/1.3 \ \cdot 10^{38}M_{BH}[M_{SUN}]$

CONCLUSIONS

Different from optically selected samples.

It seems that these objects do not host a strong accretion associated with a phase of formation.

It seems more likely that this accretion phase is tied to a re-ignition.

It is not clear why there should be a preferential redshift (0.4-1) range for such events.

FUTURE WORKS

Increase the sample.

Perform a detailed study of the morphology. Possible check of our method?