Clues on the cosmic evolution of *radio-AGNs* from their clustering properties

(Negrello, Magliocchetti, De Zotti, 2006, MNRAS, 368, 935)

Talk by: M. Negrello (SISSA, Trieste)

Clustering of extragalactic sources

Clustering of extragalactic sources

• 2-point *spatial* correlation function $\xi(r)$

$$\xi(r) = rac{DD(r) - RR(r)}{RR(r)}$$

DD(r) = data-data pairs RR(r) = random-random pairs

• 2-point angular correlation function $w(\theta)$

 $w(heta) = rac{DD(heta) - RR(heta)}{RR(heta)}$

Limber's equation

$$w(heta) = rac{\int_{z_{\min}}^{z_{\max}} dz_1 \mathcal{N}(z_1) \int_{z_{\min}}^{z_{\max}} dz_2 \mathcal{N}(z_2) \xi[r(z_1, z_2, heta)]}{\left[\int_{z_{\min}}^{z_{\max}} dz \mathcal{N}(z)
ight]^2}$$
-redshift distribution

The NRAO VLA Sky Survey (NVSS)

- v = 1.4 GHz
- FWHM = 45"
- Area ~ 10.3 sr
- $N_{obj} \sim 10^6$ down to 2.5 mJy

1. Redshift distribution of mJy radio sources

2 types of extragalactic radio sources:

- AGN-powered radio galaxies
- starforming (SF) galaxies

Pure Luminosity Evolution model of Dunlop & Peacock (1990) for steep-spectrum FRI-FRII sources

(see Magliocchetti et al., 2002)

model by Saunders et al. (1990) for starforming (IRAS) galaxies

(see Magliocchetti et al., 2002)

2. Spatial correlation function of galaxies

Galaxies are biased tracers of the underlying dark matter distribution

The angular correlation function of *mJy radio sources*

$$\square > w(heta) = f_{
m AGN}^2 w_{
m AGN}(heta) + f_{
m SF}^2 w_{
m SF}(heta)$$

source number fraction:
$$f_{\rm AGN/SF} = \frac{\int_{\mathcal{Z}} dz \mathcal{N}_{\rm AGN/SF}(z)}{\int_{\mathcal{Z}} dz \mathcal{N}(z)} \begin{cases} f_{\rm AGN} \sim 1 \\ f_{\rm SF} \sim 5 \times 10^{-3} \end{cases}$$

10 June 2006

AGN7 - Montagnana (Padova) -

Results I

- Hp: $M_{eff}(z)=const$ for AGNs $M_{eff}=10^{11} M_{\odot}/h$ for SF
 - SF give a negligible contribution to the observed clustering signal at large angular scales.
 - $w(\theta)$ cannot be accounted for by AGNs *if they are hosted by haloes* of the same mass at every epoch.

Results II

Hp: $M_{eff}(z) = A \times M_{\star}(z)$ for AGNs

 $M_{\star}(z)$ is the characteristic mass scale for spherical collapse, defined by:

 $\sigma[M_\star(z),z]=\delta_c(z)$

- the measured correlation function is now well reproduced up to θ~4°
- data-points at θ≥4° can be accounted for by small systematic variations in the surface density (ε ~10⁻⁴)

AGN7 - Montagnana (Padova) -

Conclusions

 AGNs are responsible for the large-scale angular clustering of radio sources, with starforming galaxies providing a negligible contribution.

redshift z

AGN7 - Montagnana (Padova) -