Generalised optical differentiation with patterned Liquid-Crystals

Generali GONFS aned Crystals

Generalis Genera

Introduction

We want high sensitivity for accurate wavefront correction

We want large dynamic range for the large range of seeing conditions.

 Wavefront sensors usually have a linear trade-off between dynamic range and sensitivity.

Choose which one you want, or not. The g-ODWFS can help you!

Optical differentiation wavefront sensor

Optical differentiation wavefront sensor

Optical differentiation wavefront sensor

Optical Differentiation Foucault knife-edge test

Hybrid amplitude mask

Hybrid amplitude mask

Generalised optical differentiation wavefront sensor. Haffert 2016

Hybrid amplitude mask

Generalised optical differentiation wavefront sensor. Haffert 2016

RMS wavefront error 0.81 waves

Amplitude filters

• Amplitude filters are easy to make.

Not photon conserving.

• You only measure 1 filter so it's sensitive to exact shape of amplitude profile.

Wollaston prism

Splitted output

Splitted output

Splitted output

Half wave plate

Input polarization

Angle with fast axis

Rotates by twice the angle

$$\beta = 0 (x)$$

$\beta = 0 (y)$

<u> </u>				()					
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1		\	\	\			\		
\	\		\	\			\	\	
1									

$$\beta = 1/3 \, (x)$$

$$\beta = 1/3 \, (y)$$

Direct write of patterned liquid crystals

• 1 um pixels size, discontinuities are much smaller.

• Up to 2 inch plates.

Can be made achromatic over 100% percent bandwidth

Have been used in cryotostatic environments (LBT, MagAO)

4.5 mm

Different wavefront sensor responses

Different wavefront sensor responses

The Leiden EXoplanet Instrument (LEXI)

High contrast imaging + high resolution spectroscopy instrument.

 Visitor instrument for the William Herschel Telescope at La Palma.

R&D instrument to test new HCl techniques on-sky.

Conclusion

- New sensitive and high-dynamic range wavefront sensor.
 - Finally we can decouple sensitivity and dynamic range!

Simulated, tested and verified to work in lab.

Will go on-sky in December 2017 on the WHT at La Palma.