

Spatial Filtering with a PWS on High Order Testbench

Tyler Banas

Collaborators: Markus Kasper, Alfio Puglisi, Christophe Vérinaud, Christian Soenke, Leander Mehrgan, Roland Brast

Personal Introduction

- July 2017 Master thesis in Physics at Univ. of Munich (LMU) and ESO
 - "Adaptive Optics and High Contrast Imaging: Advancing the Direct Detection of Exoplanets"
- R&D Student for Planetary Camera and Spectrograph (aka EPICS)
 - Setup HOT bench
 - Optimize AO closed-loop
 - > Study influence of spatial filtering on PWS

Outline

High Order Testbench (HOT)

Pyramid Wavefront Sensor (PWS)

Aller Carpentier, 2011

Interaction Matrix

PWS Pupil plane = $a(x, y) \exp[i \phi(x, y)]$

ITC Focal plane = $\mathcal{F}\{a(x,y) \exp[i \phi(x,y)]\}$

HASO

Closed-loop Optimization

ALPAO

ALPAO DM52 Static

White light: 150 KL modes No Turbulence PSF center sat

632 nm 150 KL modes higher sat

Aliasing and Spatial Filtering

Vérinaud et al., 2004

Are PWS susceptible to aliasing? Can a SF improve PWS performance?

g(x, y)

Aperture Masks

Cutoff frequency:

$$f_c = \frac{\lambda}{d} = f/\# \cdot N_{subap,\varnothing} \cdot \lambda_{sensing}$$

- \triangleright On HOT, $f_c \approx 1$ mm
- Procure aperture mask

Thorlabs:

Zero aperture

First Observations

No SF

- Light scattered from stuck actuators is blocked
- Slight smoothing of wavefront
 - > PWS software: RMS wavefront error drops from 50 nm to 45 nm

Closed-Loop Integrations

- Collect pupils and reconstruction matrices
 - Bypassing turbulence generator:
 - Acquire one set of pupils
 - Collect unique interaction matrix (300 K-L modes) for various spatial filter mask sizes (>1 λ/d)
 - PWS modulation at $6 \lambda/d$
- Infrared PSFs in closed-loop
 - > With turbulence:
 - 0.5" seeing phase screen (reduced low order aberrations)
 - H-band integrations

Strehl Ratio

No SF

0.00099 0.003 0.0069 0.015 0.031 0.062 0.12 0.25 0.5

1.5 λ/d SF

TT correction only (reference)

SF size (λ/d)	H-band SR
1.5	71.8%
2	72.0%
3	70.9%
4	70.5%
No SF	70.6%
Tip-Tilt only	35.2%

Contrast Curves w/ Coronagraph

12

Conclusions

- HOT is fully prepared for performing experiments in next-gen XAO
 - Ease of use takes only several minutes to close loop
- HOT PWS works well, but further optimization techniques to correct more modes.
- PWS design is robust against aliasing
 - Spatial filter produces negligible improvements in PWS performance
 - Agrees with simulations from Vérinaud et al., 2004, and Bond, 2017

Prospectives

- SFPWS improved performance in terms of sensitivity?
 - ➤ More elaborate: "dark wavefront sensing" tests on HOT
- Pass HOT torch onto PhD Student Nelly Cerpa Urra
 - Study and propose strategies to mitigate
 - Temporal bandwidth error (time-lag)
 - N-chromaticity
 - Test strategies on HOT

Thank you! Questions?